Олимпиадные задачи из источника «2006 год»
В треугольнике <i>ABC</i> провели биссектрисы углов <i>A</i> и <i>C</i>. Точки <i>P</i> и <i>Q</i> – основания перпендикуляров, опущенных из вершины <i>B</i> на эти биссектрисы. Докажите, что отрезок <i>PQ</i> параллелен стороне <i>AC</i>.
В четырёхугольнике <i>ABCD AB = BC</i>, ∠<i>A</i> = ∠<i>B</i> = 20°, ∠<i>C</i> = 30°. Продолжение стороны <i>AD</i> пересекает <i>BC</i> в точке <i>M</i>, а продолжение стороны <i>CD</i> пересекает <i>AB</i> в точке <i>N</i>. Найдите угол <i>AMN</i>.
Из точки, не лежащей в плоскости, проведены к этой плоскости перпендикуляр и три наклонные, проекции которых на данную плоскость равны a, b и c. Найдите длину перпендикуляра, если наклонные образуют с плоскостью углы, сумма которых равна 90°.
Найдите все такие функции <i>f</i>(<i>x</i>), что <i>f</i>(2<i>x</i> + 1) = 4<i>x</i>² + 14<i>x</i> + 7.
Остап Бендер и Киса Воробьянинов разделили между собой выручку от продажи слонов населению. Остап подумал: если бы я взял денег на 40% больше, то доля Кисы уменьшилась бы на 60%. А как изменилась бы доля Воробьянинова, если бы Остап взял себе денег на 50% больше?
Решите систему уравнений:
<i>x</i>² + 4sin²<i>y</i> – 4 = 0,
cos <i>x</i> – 2cos²<i>y</i> – 1 = 0.
В кубе <i>АВСDА</i><sub>1</sub><i>В</i><sub>1</sub><i>С</i><sub>1</sub><i>D</i><sub>1</sub> площадь ортогональной проекции грани <i>АА</i><sub>1</sub><i>В</i><sub>1</sub><i>В</i> на плоскость, перпендикулярную диагонали <i>АС</i><sub>1</sub>, равна 1.
Найдите площадь ортогональной проекции куба на эту плоскость.
Укажите все выпуклые четырехугольники, у которых суммы синусов противолежащих углов равны.
Найдите все простые числа <i>р</i>, для каждого из которых существует такое натуральное число <i>m</i>, что <img align="absmiddle" src="/storage/problem-media/104099/problem_104099_img_2.jpg"> – также натуральное число.
Дан равносторонний треугольник <i>АВС</i>. Точка <i>К</i> – середина стороны <i>АВ</i>, точка <i>М</i> лежит на стороне <i>ВС</i>, причём <i>ВМ</i> : <i>МС</i> = 1 : 3. На стороне <i>АС</i> выбрана точка <i>P</i> так, что периметр треугольника <i>РКМ</i> – наименьший из возможных. В каком отношении точка <i>Р</i> делит сторону <i>АС</i>?
Даны квадратные трёхчлены <i>f</i> и <i>g</i> с одинаковыми старшими коэффициентами. Известно, что сумма четырёх корней этих трёхчленов
равна <i>р</i>. Найдите сумму корней трёхчлена <i>f + g</i>, если известно, что он имеет два корня.
Один градус шкалы Цельсия равен 1,8 градусов шкалы Фаренгейта, при этом 0° по Цельсию соответствует 32° по шкале Фаренгейта.
Может ли температура выражаться одинаковым числом градусов как по Цельсию, так и по Фаренгейту?
В окружности с центром O проведены три равные хорды AB, CD и PQ (см. рисунок). Докажите, что MOK равен половине угла BLD.<div align="center"><img src="/storage/problem-media/104095/problem_104095_img_2.jpg"></div>
Гриша едет по маршруту длиной 100 км. В его автомобиле имеется компьютер, дающий прогноз времени, оставшегося до прибытия в конечный пункт. Это время рассчитывается исходя из предположения, что средняя скорость автомобиля на оставшемся участке пути будет такой же, как и на уже пройденном.
Сразу же после старта компьютер показал "2 часа" и всё дальнейшее время показывал именно это число (компьютер исправен). Найдите <i>x</i>(<i>t</i>) – зависимость пути, который проехал Гриша, от времени с момента старта. Постройте график этой зависимости.
20 шахматистов сыграли турнир в один круг. Корреспондент "Спортивной газеты" написал в своей заметке, что каждый участник этого турнира выиграл столько же партий, сколько и свёл вничью. Докажите, что корреспондент ошибся.
Сравните без помощи калькулятора числа: <img align="absmiddle" src="/storage/problem-media/104092/problem_104092_img_2.jpg">.
Один из углов треугольника на 120° больше другого.
Докажите, что биссектриса треугольника, проведённая из вершины третьего угла, вдвое длиннее, чем высота, проведённая из той же вершины.
Решите уравнение:<div align="center"><img src="/storage/problem-media/104090/problem_104090_img_2.jpg"></div>
На клетчатой бумаге нарисован прямоугольник 5x9. В левом нижнем углу стоит фишка. Коля и Серёжа по очереди передвигают ее на любое количество клеток либо вправо, либо вверх. Первым ходит Коля. Выигрывает тот, кто поставит фишку в правый верхний. Кто выигрывает при правильной игре?
Маша задумала натуральное число и нашла его остатки при делении на 3, 6 и 9. Сумма этих остатков оказалась равна 15.
Найдите остаток от деления задуманного числа на 18.
На вопрос о возрасте его детей математик ответил:
– У нас с женой трое детей. Когда родился наш первенец, суммарный возраст членов семьи был равен 45 годам, год назад, когда родился третий ребёнок – 70 годам, а сейчас суммарный возраст детей – 14 лет.
Сколько лет каждому ребенку, если известно, что у всех членов семьи дни рождения в один и тот же день?
Решите уравнение: |<i>x</i>- 2005| + |2005 -<i>x</i>| = 2006.
На физическом кружке учитель поставил следующий эксперимент. Он разложил на чашечные весы 16 гирек массами 1, 2, 3, ..., 16 грамм так, что одна из чаш перевесила. Пятнадцать учеников по очереди выходили из класса и забирали с собой по одной гирьке, причем после выхода каждого ученика весы меняли свое положение и перевешивала противоположная чаша весов. Какая гирька могла остаться на весах?
В магическом квадрате суммы чисел в каждой строке, в каждом столбце и на обеих диагоналях равны.
Можно ли составить магический квадрат 3×3 из первых девяти простых чисел?
Петя тратит ⅓ своего времени на игру в футбол, ⅕ – на учебу в школе, ⅙ – на просмотр кинофильмов, <sup>1</sup>/<sub>70</sub> – на решение олимпиадных задач и ⅓ – на сон. Можно ли так жить?