Олимпиадные задачи из источника «Окружная олимпиада (Москва)» для 11 класса
В правильной четырёхугольной усечённой пирамиде середина <i>N</i> ребра <i>B</i><sub>1</sub><i>C</i><sub>1</sub> верхней грани <i>A</i><sub>1</sub><i>B</i><sub>1</sub><i>C</i><sub>1</sub><i>D</i><sub>1</sub> соединена с серединой <i>M</i> ребра <i>AB</i> нижней грани <i>ABCD</i>. Прямые <i>B</i><sub>1</sub><i>C</i><sub>1</sub> и <i>AB</i> не лежат в одной плоскости. Докажите, что проекции рёбер <i>B</i><sub>1</sub><i>C</i><sub>1</sub> и <i>AB</i> на прямую <i>MN</i> равн...
В десятичной записи некоторого числа цифры расположены слева направо в порядке убывания. Может ли это число быть кратным числу 111?
Точка <i>Х</i> расположена на диаметре <i>АВ</i> окружности радиуса <i>R</i>. Точки <i>K</i> и <i>N</i> лежат на окружности в одной полуплоскости относительно <i>АВ</i>,
а ∠<i>KXA</i> = ∠<i>NXB</i> = 60°. Найдите длину отрезка <i>KN</i>.
Функция <i>f</i>(<i>x</i>) такова, что для всех значений <i>x</i> выполняется равенство <i>f</i>(<i>x</i> + 1) = <i>f</i>(<i>x</i>) + 2<i>x</i> + 3. Известно, что <i>f</i>(0) = 1. Найдите <i>f</i>(2012).
Туристическая фирма провела акцию: "Купи путевку в Египет, приведи четырёх друзей, которые также купят путевку, и получи стоимость путевки обратно". За время действия акции 13 покупателей пришли сами, остальных привели друзья. Некоторые из них привели ровно по четыре новых клиента, а остальные 100 не привели никого. Сколько туристов отправились в Страну Пирамид бесплатно?
Известно, что tg <i>A</i> + tg <i>B</i> = 2 и ctg <i>A</i> + ctg <i>B</i> = 3. Найдите tg (<i>A + B</i>).
Какое наименьшее количество клеток требуется отметить на шахматной доске, чтобы каждая клетка доски (отмеченная или неотмеченная) граничила по стороне хотя бы с одной отмеченной клеткой?
Известно, что <i>A</i> – наибольшее из чисел, являющихся произведением нескольких натуральных чисел, сумма которых равна 2011.
На какую наибольшую степень тройки делится число <i>A</i>?
Две окружности касаются внешним образом. <i>A</i> – точка касания их общей внешней касательной с одной из окружностей, <i>B</i> – точка той же окружности, диаметрально противоположная точке <i>A</i>. Докажите, что длина касательной, проведённой из точки <i>B</i> ко второй окружности, равна диаметру первой окружности.
Длина ребра правильного тетраэдра равна <i>a</i>. Через одну из вершин тетраэдра проведено треугольное сечение.
Докажите, что периметр <i>P</i> этого треугольника удовлетворяет неравенству <i>P</i> > 2<i>a</i>.
На доске записали 20 первых чисел натурального ряда. Когда одно из чисел стёрли, то оказалось, что среди оставшихся чисел одно является средним арифметическим всех остальных. Найдите все числа, которые могли быть стёрты.
Про углы треугольника <i>ABC</i> известно, что <img align="absmiddle" src="/storage/problem-media/116493/problem_116493_img_2.gif"> и <img align="absmiddle" src="/storage/problem-media/116493/problem_116493_img_3.gif"> . Найдите величину угла <i>C</i>.
Докажите, что уравнение <i>l</i>² + <i>m</i>² = <i>n</i>² + 3 имеет бесконечно много решений в натуральных числах.
Прямая пересекает график функции <i>y = x</i>² в точках с абсциссами <i>x</i><sub>1</sub> и <i>x</i><sub>2</sub>, а ось абсцисс – в точке с абсциссой <i>x</i><sub>3</sub>. Докажите, что <img align="absmiddle" src="/storage/problem-media/116488/problem_116488_img_2.gif"> .
Задайте формулой какую-нибудь квадратичную функцию, график которой пересекает оси координат в вершинах прямоугольного треугольника.
Какое наименьшее количество трехклеточных уголков можно разместить в квадрате8<i>× </i>8так, чтобы в этот квадрат больше нельзя было поместить ни одного такого уголка?
<center><i> <img align="absmiddle" src="/storage/problem-media/115448/problem_115448_img_2.gif"> </i></center>
Четырёхугольник<i> ABCD </i>вписан в окружность с диаметром<i> AD </i>;<i> O </i> — точка пересечения его диагоналей<i> AC </i>и<i> BD </i>является центром другой окружности, касающейся стороны<i> BC </i>. Из вершин<i> B </i>и<i> С </i>проведены касательные ко второй окружности, пересекающиеся в точке<i> T </i>. Докажите, что точка<i> T </i>лежит на отрезке<i> AD </i>.
Докажите, что если выражение<i> <img align="absmiddle" src="/storage/problem-media/115447/problem_115447_img_2.gif"> </i>принимает рациональное значение, то и выражение<i> <img align="absmiddle" src="/storage/problem-media/115447/problem_115447_img_3.gif"> </i>также принимает рациональное значение.
Укажите точки на поверхности куба, из которых диагональ куба видна под наименьшим углом.
В футбольном турнире участвовало 20 команд (каждая сыграла с каждой из остальных по одному матчу). Могло ли в результате оказаться так, что каждая из команд-участниц выиграла столько же матчей, сколько сыграла вничью?
При каких значениях <i>c</i> числа sin α и cos α являются корнями квадратного уравнения 5<i>x</i>² – 3<i>x + c</i> = 0 (α – некоторый угол)?
В каждой клетке шахматной доски сидят по два таракана. В некоторый момент времени каждый таракан переползает на соседнюю (по стороне) клетку, причём тараканы, сидевшие в одной клетке, переползают в разные клетки. Какое наибольшее количество клеток доски может после этого остаться свободным?
Докажите, что если<i> α </i>,<i> β </i>и<i> γ </i>– углы остроугольного треугольника, то<i> sinα + sinβ + sinγ > </i>2.
Непрерывная функция<i> f</i>(<i>x</i>)такова, что для всех действительных<i> x </i>выполняется неравенство:<i> f</i>(<i>x<sup>2</sup></i>)<i>-</i>(<i>f</i>(<i>x</i>))<i><sup>2</sup><img src="/storage/problem-media/111264/problem_111264_img_2.gif"><img src="/storage/problem-media/111264/problem_111264_img_3.gif"> </i>. Верно ли, что функция<i> f</i>(<i>x</i>)обязательно имеет точки экстремума?
Найдите угол при вершине осевого сечения прямого кругового конуса, если известно, что существуют три образующие боковой поверхности конуса, попарно перпендикулярные друг другу.