Олимпиадные задачи из источника «Окружная олимпиада (Москва)» для 9-11 класса

В правильной четырёхугольной усечённой пирамиде середина <i>N</i> ребра <i>B</i><sub>1</sub><i>C</i><sub>1</sub> верхней грани <i>A</i><sub>1</sub><i>B</i><sub>1</sub><i>C</i><sub>1</sub><i>D</i><sub>1</sub> соединена с серединой <i>M</i> ребра <i>AB</i> нижней грани <i>ABCD</i>. Прямые <i>B</i><sub>1</sub><i>C</i><sub>1</sub> и <i>AB</i> не лежат в одной плоскости. Докажите, что проекции рёбер <i>B</i><sub>1</sub><i>C</i><sub>1</sub> и <i>AB</i> на прямую <i>MN</i> равн...

В десятичной записи некоторого числа цифры расположены слева направо в порядке убывания. Может ли это число быть кратным числу 111?

Точка <i>Х</i> расположена на диаметре <i>АВ</i> окружности радиуса <i>R</i>. Точки <i>K</i> и <i>N</i> лежат на окружности в одной полуплоскости относительно <i>АВ</i>,

а  ∠<i>KXA</i> = ∠<i>NXB</i> = 60°.  Найдите длину отрезка <i>KN</i>.

Функция <i>f</i>(<i>x</i>) такова, что для всех значений <i>x</i> выполняется равенство  <i>f</i>(<i>x</i> + 1) = <i>f</i>(<i>x</i>) + 2<i>x</i> + 3.  Известно, что  <i>f</i>(0) = 1.  Найдите <i>f</i>(2012).

Туристическая фирма провела акцию: "Купи путевку в Египет, приведи четырёх друзей, которые также купят путевку, и получи стоимость путевки обратно". За время действия акции 13 покупателей пришли сами, остальных привели друзья. Некоторые из них привели ровно по четыре новых клиента, а остальные 100 не привели никого. Сколько туристов отправились в Страну Пирамид бесплатно?

Известно, что  tg <i>A</i> + tg <i>B</i> = 2  и  ctg <i>A</i> + ctg <i>B</i> = 3.  Найдите  tg (<i>A + B</i>).

Даны  <i>n</i> + 1  попарно различных натуральных чисел, меньших 2<i>n</i>  (<i>n</i> > 1).

Докажите, что среди них найдутся три таких числа, что сумма двух из них равна третьему.

Дана равнобокая трапеция <i>ABCD</i>  (<i>AD || BC</i>).  На дуге <i>AD</i> (не содержащей точек <i>B</i> и <i>C</i>) описанной окружности этой трапеции произвольно выбрана точка <i>M</i>. Докажите, что основания перпендикуляров, опущенных из вершин <i>A</i> и <i>D</i> на отрезки <i>BM</i> и <i>CM</i>, лежат на одной окружности.

Вася придумал новую шахматную фигуру "супер-слон". Один "супер-слон" (обозначим его <i>A</i>) бьёт другого (обозначим его <i>B</i>), если они стоят на одной диагонали, между ними нет фигур, и следующая по диагонали клетка за "супер-слоном" <i>B</i> свободна. Например, на рисунке фигура <i>a</i> бьёт фигуру <i>b</i>, но не бьёт ни одну из фигур <i>c, d, e, f</i> и <i>g</i>. <div align="center"><img src="/storage/problem-media/116871/problem_116871_img_2.gif"></div>Какое наибольшее количество "супер-слонов" можно поставить на шахматную доску так, чтобы каждый из них бился хотя бы одним другим?

На сторонах <i>AB</i> и <i>BC</i> равностороннего треугольника <i>ABC</i> отмечены точки <i>L</i> и <i>K</i> соответственно, <i>M</i> – точка пересечения отрезков <i>AK</i> и <i>CL</i>. Известно, что площадь треугольника <i>AMC</i> равна площади четырёхугольника <i>LBKM</i>. Найдите угол <i>AMC</i>.

Квадратный трёхчлен  <i>ax</i>² + 2<i>bx + c</i>  имеет два различных корня, а квадратный трёхчлен  <i>a</i>²<i>x</i>² + 2<i>b</i>²<i>x + c</i>²  корней не имеет.

Докажите, что у первого трёхчлена корни разного знака.

Расставьте в кружках, расположенных в вершинах квадрата и в его центре, пять натуральных чисел так, чтобы каждые два числа, соединенные отрезком, имели общий делитель, больший 1, а любые два числа, не соединенные отрезком, были бы взаимно просты. <div align="center"><img src="/storage/problem-media/116868/problem_116868_img_2.gif"></div>

Точка <i>K</i> – середина гипотенузы <i>АВ</i> прямоугольного треугольника <i>АВС</i>. На катетах <i>АС</i> и <i>ВС</i> выбраны точки <i>М</i> и <i>N</i> соответственно так, что угол <i>МKN</i> – прямой. Докажите, что из отрезков <i>АМ, ВN</i> и <i>MN</i> можно составить прямоугольный треугольник.

Десять футбольных команд сыграли каждая с каждой по одному разу. В результате у каждой команды оказалось ровно по <i>х</i> очков.

Каково наибольшее возможное значение <i>х</i>? (Победа – 3 очка, ничья – 1 очко, поражение – 0.)

В трапеции <i>ABCD</i> основание <i>BC</i> в два раза меньше основания <i>AD</i>. Из вершины <i>D</i> опущен перпендикуляр <i>DE</i> на сторону <i>AB</i>. Докажите, что  <i>СЕ = CD</i>.

Шесть кружков последовательно соединили отрезками. На каждом отрезке записали некоторое число, а в каждом кружке – сумму двух чисел, записанных на входящих в него отрезках. После этого стёрли все числа на отрезках и в одном из кружков (см. рис.). Можно ли найти число, стёртое в кружке?<div align="center"><img src="/storage/problem-media/116854/problem_116854_img_2.gif"></div>

В формулу линейной функции  <i>y = kx + b</i>  вместо букв <i>k</i> и <i>b</i> впишите числа от 1 до 20 (каждое по одному разу) так, чтобы получилось 10 функций, графики которых проходят через одну и ту же точку.

Сравните числа:  <i>А</i> = 2011·20122012·201320132013  и  <i>В</i> = 2013·20112011·201220122012.

Через концы основания <i>BC</i> трапеции <i>ABCD</i> провели окружность, которая пересекла боковые стороны <i>AB</i> и <i>CD</i> в точках <i>M</i> и <i>N</i> соответственно. Известно, что точка <i>T</i> пересечения отрезков <i>AN</i> и <i>DM</i> также лежит на этой окружности. Докажите, что  <i>TB</i> = <i>TC</i>.

Могут ли все корни уравнений  <i>x</i>² – <i>px + q</i> = 0  и  <i>x</i>² – (<i>p</i> + 1)<i>x + q</i> = 0  оказаться целыми числами, если:

  а)  <i>q</i> > 0;

  б)  <i>q</i> < 0?

Под ёлкой лежат 2012 шишек. Винни-Пух и ослик Иа-Иа играют в игру: по очереди берут себе шишки. Своим ходом Винни-Пух берёт одну или четыре шишки, а Иа-Иа – одну или три. Первым ходит Пух. Проигравшим считается тот, у кого нет хода. Кто из игроков сможет гарантированно победить, как бы ни играл соперник?

В параллелограмме <i>ABCD</i> диагональ <i>АС</i> в два раза больше стороны <i>АВ</i>. На стороне <i>BC</i> выбрана точка <i>K</i> так, что  ∠<i>KDB</i> = ∠<i>BDA</i>.

Найдите отношение  <i>BK</i> : <i>KC</i>.

Купец купил в Твери несколько мешков соли и продал их в Москве с прибылью в 100 рублей. На все вырученные деньги он снова купил в Твери соль (по тверской цене) и продал в Москве (по московской цене). На этот раз прибыль составила 120 рублей. Сколько денег он потратил на первую покупку?

На некоторые клетки квадратной доски 4×4 выкладывают стопкой золотые монеты, а на остальные клетки – серебряные. Можно ли положить монеты так, чтобы в каждом квадрате 3×3 серебряных монет было больше, чем золотых, а на всей доске золотых было больше, чем серебряных?

Какое наименьшее количество клеток требуется отметить на шахматной доске, чтобы каждая клетка доски (отмеченная или неотмеченная) граничила по стороне хотя бы с одной отмеченной клеткой?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка