Олимпиадные задачи из источника «Журнал "Квант"» для 8 класса - сложность 2 с решениями
Журнал "Квант"
Назад<center><i> <img src="/storage/problem-media/109632/problem_109632_img_2.gif"> </i></center> Центры<i> O<sub>1</sub> </i>,<i> O<sub>2</sub> </i>и<i> O<sub>3</sub> </i>трех непересекающихся окружностей одинакового радиуса расположены в вершинах треугольника. Из точек<i> O<sub>1</sub> </i>,<i> O<sub>2</sub> </i>и<i> O<sub>3</sub> </i>проведены касательные к данным окружностям так, как показано на рисунке. Известно, что эти касательные, пересекаясь, образовали выпуклый шестиугольник, стороны которого через одну покрашены в красный и синий цвета. Докажите, что сумма длин красных отрезков равна сумме длин синих о...
Дан невыпуклый несамопересекающийся четырёхугольник, который имеет три внутренних угла по 45°.
Докажите, что середины его сторон лежат в вершинах квадрата.
В выпуклый четырёхугольник <i>ABCD</i>, у которого углы при вершинах <i>B</i> и <i>D</i> – прямые, вписан четырёхугольник с периметром <i>P</i> (его вершины лежат по одной на сторонах четырёхугольника <i>ABCD</i>).
а) Докажите неравенство <i>P</i> ≥ 2<i>BD</i>.
б) В каких случаях это неравенство превращается в равенство?
Диагонали параллелограмма <i>ABCD</i> пересекаются в точке <i>O</i>. Описанная окружность треугольника <i>AOB</i> касается прямой <i>BC</i>.
Докажите, что описанная окружность треугольника <i>BOC</i> касается прямой <i>CD</i>.
В треугольнике <i>ABC</i> проведены биссектрисы <i>AD</i> и <i>BE</i>. Известно, что <i>DE</i> – биссектриса угла <i>ADC</i>. Найдите величину угла <i>A</i>.
Квадрат со стороной 1 разрезали на прямоугольники, у каждого из которых отметили одну сторону.
Докажите, что сумма длин всех отмеченных сторон не может быть меньше 1.
Путешественник посетил деревню, в котором каждый человек либо всегда говорит правду, либо всегда лжёт. Жители деревни стали в круг, и каждый сказал путешественнику про соседа справа, правдив ли он. На основании этих сообщений путешественник смог однозначно определить, какую долю от всех жителей деревни составляют лжецы. Определите и вы, чему она равна.
На плоскости проведено <i>n</i> прямых. Каждая пересекается ровно с 1999 другими. Найдите все <i>n</i>, при которых это возможно.
Можно ли бумажный круг с помощью ножниц перекроить в квадрат той же площади? (Разрешается сделать конечное число разрезов по прямым линиям и дугам окружностей.)
а) К любому ли шестизначному числу, начинающемуся с цифры 5, можно приписать еще 6 цифр так, чтобы полученное 12-значное число было полным квадратом?
б) Тот же вопрос про число, начинающееся с 1.
в) Найдите для каждого <i>n</i> такое наименьшее <i>k = k</i>(<i>n</i>), что к каждому <i>n</i>-значному числу можно приписать еще <i>k</i> цифр так, чтобы полученное (<i>n+k</i>)-значное число было полным квадратом.
Рассматриваются всевозможные шестизвенные замкнутые ломаные, все вершины которых лежат на окружности.
а) Нарисуйте такую ломаную, которая имеет наибольшее возможное число точек самопересечения.
б) Докажите, что большего числа самопересечений такая ломаная не может иметь.
На плоскости расположен квадрат и невидимыми чернилами нанесена точка <i>P</i>. Человек в специальных очках видит точку. Если провести прямую, то он отвечает на вопрос, по какую сторону от неё лежит <i>P</i> (если <i>P</i> лежит на прямой, то он говорит, что <i>P</i> лежит на прямой).
Какое наименьшее число таких вопросов необходимо задать, чтобы узнать, лежит ли точка <i>P</i> внутри квадрата?
Построить выпуклый четырёхугольник, зная длины всех сторон и отрезка, соединяющего середины диагоналей.
Десятичные записи натуральных чисел выписаны подряд, начиная с единицы, до некоторого <i>n</i> включительно: 12345678910111213...(<i>n</i>). Существует ли такое <i>n</i>, что в этой записи все десять цифр встречаются одинаковое количество раз?
В строчку выписано 10 целых чисел. Вторая строчка находится так: под каждым числом <i>A</i> первой строчки пишется число, равное количеству чисел первой строчки, которые больше <i>A</i> и при этом стоят правее <i>A</i>. По второй строчке аналогично строится третья строчка и т. д.
а) Докажите, что все строчки, начиная с некоторой – нулевые (состоят из сплошных нулей).
б) Каково максимально возможное число ненулевых строчек (содержащих хотя бы одно число, отличное от нуля)?
Три шахматиста <i>A, B</i> и <i>C</i> сыграли матч-турнир (каждый с каждым сыграл одинаковое число партий). Может ли случиться, что по числу очков <i>A</i> занял первое место, <i>C</i> – последнее, а по числу побед, наоборот, <i>A</i> занял последнее место, <i>C</i> – первое (за победу присуждается одно очко, за ничью – пол-очка)?
<i>n</i> чисел (<i>n</i> > 1) называются <i>близкими</i>, если каждое из них меньше чем сумма всех чисел, делённая на <i>n</i> – 1. Пусть <i>a, b, c, ... – n</i> близких чисел, <i>S</i> – их сумма. Докажите, что
а) все они положительны;
б) <i>a + b > c</i>;
в) <i>a + b > <sup>S</sup></i>/<sub><i>n</i>–1</sub>.
Докажите, что при любом натуральном <i>n</i> <img align="middle" src="/storage/problem-media/98041/problem_98041_img_2.gif">
Докажите, что <i>a</i>²<i>pq + b</i>²<i>qr + c</i>²<i>rp</i> ≤ 0, если <i>a, b, c</i> – стороны треугольника; а <i>p, q, r</i> – любые числа, удовлетворяющие условию <i>p + q + r</i> = 0.
Решите систему уравнений:
(<i>x</i><sub>3</sub> + <i>x</i><sub>4</sub> + <i>x</i><sub>5</sub>)<sup>5</sup> = 3<i>x</i><sub>1</sub>,
(<i>x</i><sub>4</sub> + <i>x</i><sub>5</sub> + <i>x</i><sub>1</sub>)<sup>5</sup> = 3<i>x</i><sub>2</sub>,
(<i>x</i><sub>5</sub> + <i>x</i><sub>1</sub> + <i>x</i><sub>2</sub>)<sup>5</sup> = 3<i>x</i><sub>3</sub>,
(<i>x</i><sub>1</sub> + <i>x</i><sub>2</sub> + <i>x</i&g...
Докажите, что предпоследняя цифра любой степени числа 3 чётна.
В некотором городе разрешаются только парные обмены квартир (если две семьи обмениваются квартирами, то в тот же день они не имеют права участвовать в другом обмене). Докажите, что любой сложный обмен квартирами можно осуществить за два дня.
(Предполагается, что при любых обменах каждая семья как до, так и после обмена занимает одну квартиру, и что семьи при этом сохраняются).
Через <i>n</i>!! обозначается произведение <i>n</i>(<i>n</i> – 2)(<i>n</i> – 4)... до единицы (или до двойки): например, 8!! = 8·6·4·2; 9!! = 9·7·5·3·1.
Докажите, что 1985!! + 1986!! делится на 1987.
Существуют ли такие 100 треугольников, ни один из которых нельзя покрыть 99 остальными?
Биссектрисы <i>BD</i> и <i>CE</i> треугольника <i>ABC</i> пересекаются в точке <i>O</i>.
Докажите, что если <i>OD = OE</i>, то либо треугольник равнобедренный, либо его угол при вершине <i>A</i> равен 60°.