Олимпиадные задачи из источника «1994 год»

Дан невыпуклый несамопересекающийся четырёхугольник, который имеет три внутренних угла по 45°.

Докажите, что середины его сторон лежат в вершинах квадрата.

В выпуклый четырёхугольник <i>ABCD</i>, у которого углы при вершинах <i>B</i> и <i>D</i> – прямые, вписан четырёхугольник с периметром <i>P</i> (его вершины лежат по одной на сторонах четырёхугольника <i>ABCD</i>).

  а) Докажите неравенство  <i>P</i> ≥ 2<i>BD</i>.

  б) В каких случаях это неравенство превращается в равенство?

Рассматривается выпуклый четырёхугольник <i>ABCD</i>. Пары его противоположных сторон продолжены до пересечения: <i>AB</i> и <i>CD</i> – в точке <i>P, CB</i> и <i>DA</i> – в точке <i>Q</i>. Пусть <i>l<sub>A</sub>, l<sub>B</sub>, l<sub>C</sub></i> и <i>l<sub>D</sub></i> – биссектрисы внешних углов четырёхугольника при вершинах соответственно <i>A, B, C, D</i>. Пусть <i>l<sub>P</sub></i> и <i>l<sub>Q</sub></i> – внешние биссектрисы углов соответственно <i>A<sub>PD</sub></i> и <i>A<sub>QB</sub></i> (то есть биссектрисы углов, дополняющих эти угл...

Существует ли такой многочлен <i>P</i>(<i>x</i>), что у него есть отрицательный коэффициент, а все коэффициенты любой его степени (<i>P</i>(<i>x</i>))<sup><i>n</i></sup>,  <i>n</i> > 1,  положительны?

Рассматривается произвольный многоугольник (не обязательно выпуклый).

  а) Всегда ли найдётся хорда многоугольника, которая делит его на две равновеликие части?

  б) Докажите, что любой многоугольник можно разделить некоторой хордой на части, площадь каждой из которых не меньше чем &frac13; площади многоугольника. (Хордой многоугольника называется отрезок, концы которого принадлежат контуру многоугольника, а сам он целиком принадлежит многоугольнику, включая контур.)

В квадрате клетчатой бумаги 10×10 нужно расставить один корабль 1×4, два – 1×3, три – 1×2 и четыре – 1×1. Корабли не должны иметь общих точек (даже вершин) друг с другом, но могут прилегать к границам квадрата. Докажите, что

  а) если расставлять их в указанном выше порядке (начиная с больших), то этот процесс всегда удается довести до конца, даже если в каждый момент заботиться только об очередном корабле, не думая о будущих;

  б) если расставлять их в обратном порядке (начиная с малых), то может возникнуть ситуация, когда очередной корабль поставить нельзя.

Найдите наибольшее натуральное число, не оканчивающееся нулем, которое при вычеркивании одной (не первой) цифры уменьшается в целое число раз.

Две окружности пересекаются в точках <i>A</i> и <i>B</i>. В точке <i>A</i> к обеим проведены касательные, пересекающие окружности в точках <i>M</i> и <i>N</i>. Прямые <i>BM</i> и <i>BN</i> пересекают окружности еще раз в точках <i>P</i> и <i>Q</i> (<i>P</i> – на прямой <i>BM, Q</i> – на прямой <i>BN</i>). Докажите, что отрезки <i>MP</i> и <i>NQ</i> равны.

Бесконечная последовательность чисел <i>x<sub>n</sub></i> определяется условиями:  <i>x</i><sub><i>n</i>+1</sub> = 1 – |1 – 2<i>x<sub>n</sub></i>|,  причём  0 ≤ <i>x</i><sub>1</sub> ≤ 1.

  а) Докажите, что последовательность, начиная с некоторого места, периодическая в том и только в том случае, когда <i>x</i><sub>1</sub> рационально.

  б) Сколько существует значений <i>x</i><sub>1</sub>, для которых эта последовательность – периодическая с периодом <i>T</i> (для каждого <i>T</i> = 2, 3, ...)?

Десятичные записи натуральных чисел выписаны подряд, начиная с единицы, до некоторого <i>n</i> включительно:   12345678910111213...(<i>n</i>). Существует ли такое <i>n</i>, что в этой записи все десять цифр встречаются одинаковое количество раз?

Через <i>S</i>(<i>n</i>) обозначим сумму цифр числа <i>n</i> (в десятичной записи).

Существуют ли три таких различных натуральных числа <i>m, n</i> и <i>p</i>, что   <i>m + S</i>(<i>m</i>) = <i>n+S</i>(<i>n</i>) = <i>p + S</i>(<i>p</i>)?

В строчку выписано 10 целых чисел. Вторая строчка находится так: под каждым числом <i>A</i> первой строчки пишется число, равное количеству чисел первой строчки, которые больше <i>A</i> и при этом стоят правее <i>A</i>. По второй строчке аналогично строится третья строчка и т. д.

  а) Докажите, что все строчки, начиная с некоторой – нулевые (состоят из сплошных нулей).

  б) Каково максимально возможное число ненулевых строчек (содержащих хотя бы одно число, отличное от нуля)?

Три шахматиста <i>A, B</i> и <i>C</i> сыграли матч-турнир (каждый с каждым сыграл одинаковое число партий). Может ли случиться, что по числу очков <i>A</i> занял первое место, <i>C</i> – последнее, а по числу побед, наоборот, <i>A</i> занял последнее место, <i>C</i> – первое (за победу присуждается одно очко, за ничью – пол-очка)?

В каждой клетке квадрата 8×8 клеток проведена одна из диагоналей. Рассмотрим объединение этих 64 диагоналей. Оно состоит из нескольких связных частей (к одной части относятся точки, между которыми можно пройти по одной или нескольким диагоналям). Может ли количество этих частей быть больше

  а) 15;

  б) 20?

  в) Может ли в аналогичной задаче про квадрат <i>n×n</i> клеток получиться больше чем <sup><i>n</i>²</sup>/<sub>4</sub> частей (для  <i>n</i> > 8)?

Выпуклый многоугольник разрезан на выпуклые семиугольники (так, что каждая сторона многоугольника является стороной одного из семиугольников). Докажите, что найдутся четыре соседние вершины многоугольника, принадлежащие одному семиугольнику.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка