Задача
Биссектрисы BD и CE треугольника ABC пересекаются в точке O.
Докажите, что если OD = OE, то либо треугольник равнобедренный, либо его угол при вершине A равен 60°.
Решение
В треугольниках ADO и AEO равны две стороны и угол. Поэтому они либо равны, либо ∠ADO + ∠AEO = 180°. В первом случае треугольник равнобедренный в силу симметрии картинки относительно прямой AO. Во втором случае ∠A + ∠DOE = 180°. Угол DOE между биссектрисами BD и CE равен 90° + ½ ∠A (см. задачу 155448). Отсюда и находим угол A.
Ответ
Ответ задачи отсутствует
Чтобы оставлять комментарии, войдите или зарегистрируйтесь
Комментариев нет