Олимпиадные задачи из источника «1972 год» - сложность 2-3 с решениями
Пусть <i>a</i> – заданное вещественное число, <i>n</i> – натуральное число, <i>n</i> > 1.
Найдите все такие <i>x</i>, что сумма корней <i>n</i>-й степени из чисел <i>x<sup>n</sup> – a<sup>n</sup></i> и 2<i>a<sup>n</sup> – x<sup>n</sup></i> равна числу <i>a</i>.
В квадратной таблице 4×4 расставлены числа 1, 2, 3, ..., 16 так, что сумма четырёх чисел в каждой строке, в каждом столбце и на каждой из двух диагоналей равна одному и тому же числу, причём числа 1 и 16 стоят в противоположных углах таблицы. Докажите, что в этом "магическом квадрате" сумма любых двух чисел, расположенных симметрично относительно центра квадрата, одна и та же.
На плоскости нарисован правильный шестиугольник, длина стороны которого равна 1. При помощи одной только линейки постройте отрезок, длина которого равна <img align="absmiddle" src="/storage/problem-media/73706/problem_73706_img_2.gif">
Пусть <i>k</i> и <i>n</i> – натуральные числа, <i>k ≤ n</i>. Расставьте первые <i>n</i>² натуральных чисел в таблицу <i>n</i>×<i>n</i> так, чтобы в каждой строке числа шли в порядке возрастания и при этом сумма чисел в <i>k</i>-м столбце была а) наименьшей; б) наибольшей.
В любой арифметической прогрессии <i>a, a + d, a</i> + 2<i>d, ..., a + nd</i>, ..., составленной из натуральных чисел, есть бесконечно много членов, в разложении которых на простые множители входят в точности одни и те же простые числа. Докажите это.
Последовательность натуральных чисел <i>a</i><sub>1</sub> < <i>a</i><sub>2</sub> < <i>a</i><sub>3</sub> < ... < <i>a</i><sub><i>n</i></sub> < ... такова, что каждое натуральное число либо входит в последовательность, либо представимо в виде суммы двух членов последовательности, быть может, одинаковых. Докажите, что <i>a</i><sub><i>n</i></sub> ≤ <i>n</i>² для любого <i>n</i> = 1, 2, 3, ...
Пусть <i>a, b, m, n</i> – натуральные числа, причём числа <i>a</i> и <i>b</i> взаимно просты и <i>a</i> > 1.
Докажите, что если <i>a<sup>m</sup> + b<sup>m</sup></i> делится на <i>a<sup>n</sup> + b<sup>n</sup></i>, то <i>m</i> делится на <i>n</i>.
Последовательность <i>x</i><sub>0</sub>, <i>x</i><sub>1</sub>, <i>x</i><sub>2</sub>, ... определена следующими условиями: <i>x</i><sub>0</sub> = 1, <i>x</i><sub>1</sub> = λ, для любого <i>n</i> > 1 выполнено равенство <div align="center">(α + β)<i><sup>n</sup>x<sub>n</sub></i> = α<i><sup>n</sup>x<sub>n</sub>x</i><sub>0</sub> + α<sup><i>n</i>–1</sup>β<i>x</i><sub><i>n</i>–1</sub><i>x</i><sub>1</sub> + α<sup><i>n</i>–2</sup>β<sup>2</sup>...
а) В вершинах правильного семиугольника расставлены чёрные и белые фишки. Докажите, что найдутся три фишки одного цвета,
лежащие в вершинах равнобедренного треугольника. б) Верно ли аналогичное утверждение для восьмиугольника? в) Для каких правильных <i>n</i>-угольников аналогичное верно, а для каких – нет.
Хозяин обещает работнику платить в среднем <img align="absmiddle" src="/storage/problem-media/73680/problem_73680_img_2.gif"> рублей в день. Для этого каждый день он платит 1 или 2 рубля с таким расчётом, чтобы для любого натурального <i>n</i> выплаченная за первые <i>n</i> дней сумма была натуральным числом, наиболее близким к <img align="absmiddle" src="/storage/problem-media/73680/problem_73680_img_3.gif"> Вот величины первых пяти выплат: 1, 2, 1, 2, 1. Докажите, что последовательность выплат непериодическая.
Найдите наименьшее натуральное число <i>n</i>, для которого выполнено следующее условие: если число <i>p</i> – простое и <i>n</i> делится на <i>p</i> – 1, то <i>n</i> делится на <i>p</i>.
а) Докажите, что нельзя занумеровать рёбра куба числами 1, 2, ..., 11, 12 так, чтобы для каждой вершины сумма номеров трёх выходящих из неё рёбер была одной и той же. б) Можно ли вычеркнуть одно из чисел 1, 2, ..., 12, 13 и оставшимися занумеровать рёбра куба так, чтобы выполнялось то же условие?
Можно ли увезти из каменоломни 50 камней, массы которых 370 кг, 372 кг, 374 кг, ..., 468 кг (арифметическая прогрессия с разностью 2 кг), на семи трёхтонках?
а) В ведро налили 12 литров молока. Пользуясь лишь сосудами в 5 и 7 л, разделите молоко на две равные части.
б) Решите общую задачу: при каких <i>a</i> и <i>b</i> можно разделить пополам <i>a + b</i> литров молока, пользуясь лишь сосудами в <i>a</i> литров, <i>b</i> литров и <i>a + b</i> литров? За одно переливание из одного сосуда в другой можно вылить всё, что там есть, или долить второй сосуд до верха.
Для каждого натурального <i>n</i> обозначим через <i>s</i>(<i>n</i>) сумму цифр его десятичной записи. Назовём натуральное число <i>m</i> особым, если его нельзя представить в виде <i>m = n + s</i>(<i>n</i>). (Например, число 117 не особое, поскольку 117 = 108 + <i>s</i>(108), а число 121, как нетрудно убедиться, – особое.) Верно ли, что особых чисел существует лишь конечное число?
Для любых <i>n</i> вещественных чисел <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, ..., <i>a<sub>n</sub></i> существует такое натуральное <i>k ≤ n</i>, что каждое из <i>k</i> чисел <i>a</i><sub><i>k</i></sub>, ½ (<i>a<sub>k</sub> + a</i><sub><i>k</i>–1</sub>),
⅓ (<i>a<sub>k</sub> + a</i><sub><i>k</i>–1</sub> + <i>a</i><sub><i>k</i>–2</sub>), ..., <sup>1</sup>/<sub><i>k</i></sub> (<i>a<sub>k</sub> + a</i><sub><i>k</i>–1</su...
Докажите, что при любом простом <i>p</i> <img align="middle" src="/storage/problem-media/60750/problem_60750_img_2.gif"> делится на <i>p</i>.
Диагонали выпуклого четырёхугольника взаимно перпендикулярны. Докажите, что четыре проекции точки пересечения диагоналей на стороны четырёхугольника лежат на одной окружности.
Пятиугольник <i>ABCDE</i> вписан в окружность. Расстояния от точки <i>A</i> до прямых <i>BC, CD</i> и <i>DE</i> равны соответственно <i>a, b</i> и <i>c</i>.
Найдите расстояние от вершины <i>A</i> до прямой <i>BE</i>.