Олимпиадные задачи по теме «Числовые последовательности» - сложность 2-4 с решениями
Числовые последовательности
НазадПоследовательность чисел <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, ... задана условиями <i>a</i><sub>1</sub> = 1, <i>a</i><sub>2</sub> = 143 и <img align="absmiddle" src="/storage/problem-media/116589/problem_116589_img_2.gif"> при всех <i>n</i> ≥ 2.
Докажите, что все члены последовательности – целые числа.
Последовательность<i> a<sub>1</sub>,a<sub>2</sub>,.. </i>такова, что<i> a<sub>1</sub><img align="absmiddle" src="/storage/problem-media/115397/problem_115397_img_2.gif"></i>(1<i>,</i>2)и<i> a<sub>k+</sub></i>1<i>=a<sub>k</sub>+<img align="absmiddle" src="/storage/problem-media/115397/problem_115397_img_3.gif"> </i>при любом натуральном <i> k </i>. Докажите, что в ней не может существовать более одной пары членов с целой суммой.
Последовательность(<i>a<sub>n</sub></i>)задана условиями<i> a<sub>1</sub>= </i>1000000,<i> a<sub>n+</sub></i>1<i>=n</i>[<i><img align="absmiddle" src="/storage/problem-media/111805/problem_111805_img_2.gif"></i>]<i>+n </i>. Докажите, что в ней можно выделить бесконечную подпоследовательность, являющуюся арифметической прогрессией.
По данному натуральному числу <i>a</i><sub>0</sub> строится последовательность {<i>a<sub>n</sub></i>} следующим образом <img align="absmiddle" src="/storage/problem-media/110036/problem_110036_img_2.gif"> если <i>a<sub>n</sub></i> нечётно, и <sup><i>a</i><sub>0</sub></sup>/<sub>2</sub>, если <i>a<sub>n</sub></i> чётно. Докажите, что при любом нечётном <i>a</i><sub>0</sub> > 5 в последовательности {<i>a<sub>n</sub></i>} встретятся сколь угодно большие числа.
Пусть<i> M={x<sub>1</sub>, .., x</i>30<i>} </i>– множество, состоящее из 30 различных положительных чисел;<i> A<sub>n</sub> </i>(1<i><img src="/storage/problem-media/109798/problem_109798_img_2.gif"> n<img src="/storage/problem-media/109798/problem_109798_img_2.gif"> </i>30) – сумма всевозможных произведений различных<i> n </i>элементов множества<i> M </i>. Докажите, что если<i> A</i>15<i>>A</i>10, то<i> A<sub>1</sub>></i>1.
Последовательность натуральных чисел <i>a<sub>n</sub></i> строится следующим образом: <i>a</i><sub>0</sub> – некоторое натуральное число; <i>a</i><sub><i>n</i>+1</sub> = ⅕ <i>a<sub>n</sub></i>, если <i>a<sub>n</sub></i> делится на 5;
<i>a</i><sub><i>n</i>+1</sub> = [<img align="absmiddle" src="/storage/problem-media/109784/problem_109784_img_2.gif"> <i>a<sub>n</sub></i>], если <i>a<sub>n</sub></i> не делится на 5. Докажите, что начиная с некоторого члена последовательность <i>a<sub>n</sub></i> возрастает.
Найдите все бесконечные ограниченные последовательности натуральных чисел <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, <i>a</i><sub>3</sub>, ..., для всех членов которых, начиная с третьего, выполнено <div align="center"><img src="/storage/problem-media/109692/problem_109692_img_2.gif"></div>
Существует ли последовательность натуральных чисел, в которой каждое натуральное число встречается ровно один раз и при этом для любого <i>k</i> = 1, 2, 3, ... сумма первых <i>k</i> членов последовательности делится на <i>k</i>?
Докажите, что для любого натурального числа <i>a</i><sub>1</sub> > 1 существует такая возрастающая последовательность натуральных чисел <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, <i>a</i><sub>3</sub>, ...,
что <img align="absmiddle" src="/storage/problem-media/109599/problem_109599_img_2.gif"> делится на <i>a</i><sub>1</sub> + <i>a</i><sub>2</sub> + ... + <i>a<sub>k</sub></i> при всех <i>k</i> ≥ 1.
На плоскости отмечены две точки на расстоянии 1. Разрешается, измерив циркулем расстояние между двумя отмеченными точками, провести окружность с центром в любой отмеченной точке с измеренным радиусом. Линейкой разрешается провести прямую через любые две отмеченные точки. При этом отмечаются новые точки – точки пересечения построенных линий. Пусть Ц(<i>n</i>) – наименьшее число линий, проведение которых одним циркулем позволяет получить две отмеченные точки на расстоянии <i>n</i> (<i>n </i> – натуральное). ЛЦ(<i>n</i>) – то же, но циркулем и линейкой. Докажите, что последовательность <img align="middle" src="/storage/problem-media/109598/problem_109598_img_2.gif"> неограничена.
В магазин завезли 20 кг сыра, за ним выстроилась очередь. Отпустив сыр очередному покупателю, продавщица безошибочно подсчитывает средний вес покупки по всему проданному сыру и сообщает, на сколько человек хватит оставшегося сыра, если все будут покупать именно по этому среднему весу. Могла ли продавщица после каждого из первых 10 покупателей сообщать, что сыра хватит ещё ровно на 10 человек? Если да, то сколько сыра осталось в магазине после первых 10 покупателей?
Последовательность натуральных чисел <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, ..., <i>a<sub>n</sub></i>, ... такова, что для каждого <i>n</i> уравнение <i>a</i><sub><i>n</i>+2</sub><i>x</i>² + <i>a</i><sub><i>n</i>+1</sub><i>x</i> + <i>a<sub>n</sub></i> = 0 имеет действительный корень. Может ли число членов этой последовательности быть
а) равным 10;
б) бесконечным?
Рассматривается последовательность слов, состоящих из букв "A" и "B". Первое слово в последовательности – "A", <i>k</i>-е слово получается из (<i>k</i>–1)-го с помощью следующей операции: каждое "A" заменяется на "AAB", каждое "B" – на "A". Легко видеть, что каждое слово является началом следующего, тем самым получается бесконечная последовательность букв: AABAABAAABAABAAAB...
а) На каком месте в этой последовательности встретится 1000-я буква "A"?
б) Докажите, что эта последовательность – непериодическая.
При каком натуральном <i>K</i> величина <img align="absmiddle" src="/storage/problem-media/97900/problem_97900_img_2.gif"> достигает максимального значения?
<i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, <i>a</i><sub>3</sub>, ... – возрастающая последовательность натуральных чисел. Известно, что <i>a<sub>a<sub>k</sub></sub></i> = 3<i>k</i> для любого <i>k</i>.
Найти а) <i>a</i><sub>100</sub>; б) <i>a</i><sub>1983</sub>.
За дядькой Черномором выстроилось чередой бесконечное число богатырей. Доказать, что он может приказать части из них выйти из строя так, чтобы в строю осталось бесконечно много богатырей и все они стояли по росту (не обязательно в порядке убывания роста).
Доказать, что последовательность<i>x</i><sub>n</sub>= sin(<i>n</i><sup>2</sup>) не стремится к нулю при<i>n</i>, стремящемся к бесконечности.
При каком значении<i>K</i>величина<i>A</i><sub>k</sub>=${\dfrac{19^k+66^k}{k!}}$максимальна?
Числа 1, 2, 3, ..., 101 выписаны в ряд в каком-то порядке.
Докажите, что из них можно вычеркнуть 90 так, что оставшиеся 11 будут расположены по их величине (либо возрастая, либо убывая).
Что больше: 300! или 100<sup>300</sup>?
Дан треугольник <i>C</i><sub>1</sub><i>C</i><sub>2</sub><i>O</i>. В нём проводится биссектриса <i>C</i><sub>2</sub><i>C</i><sub>3</sub>, затем в треугольнике <i>C</i><sub>2</sub><i>C</i><sub>3</sub><i>O</i> – биссектриса <i>C</i><sub>3</sub><i>C</i><sub>4</sub> и так далее.
Докажите, что последовательность величин углов γ<i><sub>n</sub> = C</i><sub><i>n</i>+1</sub><i>C<sub>n</sub>O</i> стремится к пределу, и найдите этот предел, если <i>C</i><sub>1</sub><i>OC</i><...
Хозяин обещает работнику платить в среднем <img align="absmiddle" src="/storage/problem-media/73680/problem_73680_img_2.gif"> рублей в день. Для этого каждый день он платит 1 или 2 рубля с таким расчётом, чтобы для любого натурального <i>n</i> выплаченная за первые <i>n</i> дней сумма была натуральным числом, наиболее близким к <img align="absmiddle" src="/storage/problem-media/73680/problem_73680_img_3.gif"> Вот величины первых пяти выплат: 1, 2, 1, 2, 1. Докажите, что последовательность выплат непериодическая.
В трапеции<i>ABCD</i>с основаниями<nobr><i>AB</i> = <i>a</i></nobr>и<nobr><i>CD</i> = <i>b</i></nobr>проведён отрезок<i>A</i><sub>1</sub><i>B</i><sub>1</sub>, соединяющий середины диагоналей.<nobr>В полученной</nobr>трапеции проведён отрезок<i>A</i><sub>2</sub><i>B</i><sub>2</sub>, тоже соединяющий середины диагоналей, и так далее. Может ли в последовательности длин отрезков<i>AB</i>,<i>A</i><sub>1</sub><i>B</i><sub>1</sub>,<i>A</i><sub>2</sub><i>B</i><sub>2</sub>,... какое-то число встретиться...
Кощей придумал для Ивана-дурака испытание. Он дал Ивану волшебную дудочку, на которой можно играть только две ноты – до и си. Для прохождения испытания Ивану нужно сыграть какую-нибудь мелодию из 300 нот на свой выбор. Но до того, как он начнёт играть, Кощей выбирает и объявляет запретными одну мелодию из пяти нот, одну – из шести нот, ..., одну – из 30 нот. Если в какой-то момент последние сыгранные ноты образуют одну из запретных мелодий, дудочка перестаёт звучать. Сможет ли Иван пройти испытание, какие бы мелодии Кощей ни объявил запретными?
Бесконечные возрастающие арифметические прогрессии $a_{1}, a_{2}, a_{3}, \ldots$ и $b_{1}, b_{2}, b_{3}, \ldots$ состоят из положительных чисел. Известно, что отношение $\frac{a_{k}}{b_{k}}$ целое при любом $k$. Верно ли, что это отношение не зависит от $k$?