Олимпиадные задачи по теме «Действительные числа» - сложность 3 с решениями
Действительные числа
НазадЦелые числа <i>m</i> и <i>n</i> таковы, что сумма <img align="absmiddle" src="/storage/problem-media/116373/problem_116373_img_2.gif"> целая. Верно ли, что оба слагаемых целые?
Докажите, что если выражение<i> <img align="absmiddle" src="/storage/problem-media/115447/problem_115447_img_2.gif"> </i>принимает рациональное значение, то и выражение<i> <img align="absmiddle" src="/storage/problem-media/115447/problem_115447_img_3.gif"> </i>также принимает рациональное значение.
В бесконечной последовательности (<i>x<sub>n</sub></i>) первый член <i>x</i><sub>1</sub> – рациональное число, большее 1, и <i>x</i><sub><i>n</i>+1</sub> = <i>x<sub>n</sub></i> + <sup>1</sup>/<sub>[<i>x<sub>n</sub></i>]</sub> при всех натуральных <i>n</i>.
Докажите, что в этой последовательности есть целое число.
Последовательность(<i>a<sub>n</sub></i>)задана условиями<i> a<sub>1</sub>= </i>1000000,<i> a<sub>n+</sub></i>1<i>=n</i>[<i><img align="absmiddle" src="/storage/problem-media/111805/problem_111805_img_2.gif"></i>]<i>+n </i>. Докажите, что в ней можно выделить бесконечную подпоследовательность, являющуюся арифметической прогрессией.
При каких натуральных <i>n</i> найдутся такие положительные рациональные, но не целые числа <i>a</i> и <i>b</i>, что оба числа <i>a + b</i> и <i>a<sup>n</sup> + b<sup>n</sup></i> – целые?
Действительные числа <i>x</i> и <i>y</i> таковы, что для любых различных простых нечётных <i>p</i> и <i>q</i> число <i>x<sup>p</sup> + y<sup>q</sup> </i> рационально.
Докажите, что <i>x</i> и <i>y</i> – рациональные числа.
Ненулевые числа <i>a</i> и <i>b</i> удовлетворяют равенству <i>a</i>²<i>b</i>²(<i>a</i>²<i>b</i>² + 4) = 2(<i>a</i><sup>6</sup> + <i>b</i><sup>6</sup>). Докажите, что хотя бы одно из них иррационально.
Существуют ли такие попарно различные натуральные числа <i>m, n, p, q</i>, что <i>m + n = p + q</i> и <img align="absmiddle" src="/storage/problem-media/109812/problem_109812_img_2.gif">
Числовое множество <i>M</i>, содержащее 2003 различных числа, таково, что для каждых двух различных элементов <i>a, b</i> из <i>M</i> число
<img align="absmiddle" src="/storage/problem-media/109787/problem_109787_img_2.gif"> рационально. Докажите, что для любого <i>a</i> из <i>M</i> число <img align="absmiddle" src="/storage/problem-media/109787/problem_109787_img_3.gif"> рационально.
Последовательность натуральных чисел <i>a<sub>n</sub></i> строится следующим образом: <i>a</i><sub>0</sub> – некоторое натуральное число; <i>a</i><sub><i>n</i>+1</sub> = ⅕ <i>a<sub>n</sub></i>, если <i>a<sub>n</sub></i> делится на 5;
<i>a</i><sub><i>n</i>+1</sub> = [<img align="absmiddle" src="/storage/problem-media/109784/problem_109784_img_2.gif"> <i>a<sub>n</sub></i>], если <i>a<sub>n</sub></i> не делится на 5. Докажите, что начиная с некоторого члена последовательность <i>a<sub>n</sub></i> возрастает.
Числовое множество<i> M </i>, содержащее 2003 различных положительных числа, таково, что для любых трех различных элементов<i> a,b,c </i>из<i> M </i>число<i> a</i>2<i>+bc </i>рационально. Докажите, что можно выбрать такое натуральное<i> n </i>, что для любого<i> a </i>из<i> M </i>число<i> a<img src="/storage/problem-media/109780/problem_109780_img_2.gif"> </i>рационально.
Найдите сумму <center> <img src="/storage/problem-media/109715/problem_109715_img_2.gif">
</center>
Докажите, что при любом натуральном <i>n</i> справедливо неравенство <img align="absmiddle" src="/storage/problem-media/109704/problem_109704_img_2.gif">
Во всех рациональных точках действительной прямой расставлены целые числа.
Докажите, что найдётся такой отрезок, что сумма чисел на его концах не превосходит удвоенного числа в его середине.
Найдите все функции<i> f</i>(<i>x</i>), определенные при всех положительных<i> x </i>, принимающие положительные значения и удовлетворяющие при любых положительных<i> x </i>и<i> y </i>равенству<i> f</i>(<i>x<sup>y</sup></i>)<i>=f</i>(<i>x</i>)<i><sup>f</sup></i>(<i>y</i>).
С ненулевым числом разрешается проделывать следующие операции:<i> x<img src="/storage/problem-media/109493/problem_109493_img_2.gif"> <img src="/storage/problem-media/109493/problem_109493_img_3.gif"> </i>,<i> x<img src="/storage/problem-media/109493/problem_109493_img_2.gif"> <img src="/storage/problem-media/109493/problem_109493_img_4.gif"> </i>. Верно ли, что из каждого ненулевого рационального числа можно получить каждое рациональное число с помощью конечного числа таких операций?
В числе <i>a</i> = 0,12457... <i>n</i>-я цифра после запятой равна цифре слева от запятой в числе <img align="absmiddle" src="/storage/problem-media/109196/problem_109196_img_2.gif"> Докажите, что α – иррациональное число.
Про непрерывную функцию<i>f</i>известно, что:<ol> <li><i>f</i> определена на всей числовой прямой; </li> <li><i>f</i> в каждой точке имеет производную (и, таким образом, график <i>f</i> в каждой точке имеет единственную касательную); </li> <li>график функции <i>f</i> не содержит точек, у которых одна из координат рациональна, а другая — иррациональна. </li> </ol> Следует ли отсюда, что график <i>f</i> — прямая?
Рассмотрим степени пятерки: 1, 5, 25, 125, 625, ... Образуем последовательность их первых цифр: 1, 5, 2, 1, 6, ...
Докажите, что любой кусок этой последовательности, записанный в обратном порядке, встретится в последовательности первых цифр степеней двойки (1, 2, 4, 8, 1, 3, 6, 1, ...).
Существуют ли такие иррациональные числа <i>a</i> и <i>b</i>, что <i>a </i> > 1, <i>b</i> > 1, и [<i>a<sup>m</sup></i>] отлично от [<i>b<sup>n</sup></i>] при любых натуральных числах <i>m</i> и <i>n</i>?
а) Квадрат разрезан на равные прямоугольные треугольники с катетами 3 и 4 каждый. Докажите, что число треугольников чётно. б) Прямоугольник разрезан на равные прямоугольные треугольники с катетами 1 и 2 каждый. Докажите, что число треугольников чётно.
Дано <i>n</i> чисел, <i>p</i> – их произведение. Разность между <i>p</i> и каждым из этих чисел – нечётное число. Докажите, что все данные <i>n</i> чисел иррациональны.
Существует ли такая сфера, на которой имеется ровно одна рациональная точка? (Рациональная точка – точка, у которой все три декартовы координаты – рациональные числа.)
Рассматривается последовательность, <i>n</i>-й член которой есть первая цифра числа 2<sup><i>n</i></sup>.
Докажите, что количество различных "слов" длины 13 – наборов из 13 подряд идущих цифр – равно 57.
Бесконечная последовательность чисел <i>x<sub>n</sub></i> определяется условиями: <i>x</i><sub><i>n</i>+1</sub> = 1 – |1 – 2<i>x<sub>n</sub></i>|, причём 0 ≤ <i>x</i><sub>1</sub> ≤ 1.
а) Докажите, что последовательность, начиная с некоторого места, периодическая в том и только в том случае, когда <i>x</i><sub>1</sub> рационально.
б) Сколько существует значений <i>x</i><sub>1</sub>, для которых эта последовательность – периодическая с периодом <i>T</i> (для каждого <i>T</i> = 2, 3, ...)?