Олимпиадные задачи по теме «Треугольник Паскаля и бином Ньютона» - сложность 3 с решениями
Треугольник Паскаля и бином Ньютона
НазадДаны положительные числа <i>b</i> и <i>c</i>. Докажите неравенство (<i>b</i> – <i>c</i>)<sup>2011</sup>(<i>b</i> + <i>c</i>)<sup>2011</sup>(<i>c</i> – <i>b</i>)<sup>2011</sup> ≥ (<i>b</i><sup>2011</sup> – <i>c</i><sup>2011</sup>)(<i>b</i><sup>2011</sup> + <i>c</i><sup>2011</sup>)(<i>c</i><sup>2011</sup> – <i>b</i><sup>2011</sup>).
Докажите, что при любых натуральных 0 <<i>k</i><<i>m < n</i> числа <img align="absmiddle" src="/storage/problem-media/111922/problem_111922_img_2.gif"> и <img align="absmiddle" src="/storage/problem-media/111922/problem_111922_img_3.gif"> не взаимно просты.
Назовём усложнением числа приписывание к нему одной цифры в начало, в конец или между любыми двумя его цифрами. Существует ли натуральное число, из которого невозможно получить полный квадрат с помощью ста усложнений?
Докажите неравенство sin<sup><i>n</i></sup>2<i>x</i> + (sin<i><sup>n</sup>x</i> – cos<i><sup>n</sup>x</i>)² ≤ 1.
Существуют ли такие иррациональные числа <i>a</i> и <i>b</i>, что <i>a </i> > 1, <i>b</i> > 1, и [<i>a<sup>m</sup></i>] отлично от [<i>b<sup>n</sup></i>] при любых натуральных числах <i>m</i> и <i>n</i>?
Каких нечётных натуральных чисел <i>n</i> < 10000 больше: тех, для которых число, образованное четырьмя последними цифрами числа <i>n</i><sup>9</sup>, больше <i>n</i>, или тех, для которых оно меньше <i>n</i>?
Решить в натуральных числах уравнение <i>x</i><sup>2<i>y</i></sup> + (<i>x</i> + 1)<sup>2<i>y</i></sup> = (<i>x</i> + 2)<sup>2<i>y</i></sup>.
а) Докажите, что <img align="absmiddle" src="/storage/problem-media/73734/problem_73734_img_2.gif"> (сумма берётся по всем целым <i>i</i>, 0 ≤ <i>i ≤ <sup>n</sup></i>/<sub>2</sub>). б) Докажите, что если <i>p</i> и <i>q</i> – различные числа и <i>p + q</i> = 1, то <div align="center"><img src="/storage/problem-media/73734/problem_73734_img_3.gif"></div>
Докажите, что для любого натурального числа <i>n</i> <img align="absmiddle" src="/storage/problem-media/73719/problem_73719_img_2.gif">
Последовательность <i>x</i><sub>0</sub>, <i>x</i><sub>1</sub>, <i>x</i><sub>2</sub>, ... определена следующими условиями: <i>x</i><sub>0</sub> = 1, <i>x</i><sub>1</sub> = λ, для любого <i>n</i> > 1 выполнено равенство <div align="center">(α + β)<i><sup>n</sup>x<sub>n</sub></i> = α<i><sup>n</sup>x<sub>n</sub>x</i><sub>0</sub> + α<sup><i>n</i>–1</sup>β<i>x</i><sub><i>n</i>–1</sub><i>x</i><sub>1</sub> + α<sup><i>n</i>–2</sup>β<sup>2</sup>...
Изначально на стол кладут 100 карточек, на каждой из которых записано по натуральному числу; при этом среди них ровно 28 карточек с нечётными числами. Затем каждую минуту проводится следующая процедура. Для каждых 12 карточек, лежащих на столе, вычисляется произведение записанных на них чисел, все эти произведения складываются, и полученное число записывается на новую карточку, которая добавляется к лежащим на столе. Можно ли выбрать исходные 100 чисел так, что для любого натурального <i>d</i> на столе рано или поздно появится карточка с числом, кратным 2<sup><i>d</i></sup>?
Изначально на стол положили 100 карточек, на каждой из которых записано по натуральному числу; при этом было ровно 43 карточки с нечётными числами. Затем каждую минуту проводилась следующая процедура. Для каждых трёх карточек, лежащих на столе, вычислялось произведение записанных на них чисел, все эти произведения складывались, и полученное число записывалось на новую карточку, которая добавлялась к лежащим на столе. Через год после начала процесса выяснилось, что на столе есть карточка с числом, кратным 2<sup>10000</sup>. Докажите, что число, кратное 2<sup>10000</sup>, было на одной из карточек уже через день после начала.
Вася купил <i>n</i> пар одинаковых носков. В течение <i>n</i> дней Вася не знал проблем: каждое утро брал из шкафа новую пару и носил её целый день. Через <i>n</i> дней Васина мама постирала все носки в стиральной машине и разложила их по парам, как получилось, поскольку, повторим, носки одинаковые. Назовём пару носков <i>удачной</i>, если оба носка в этой паре были на Васе в один и тот же день.
а) Найти вероятность того, что все получившиеся пары удачные.
б) Доказать, что матожидание числа удачных пар больше 0,5.
В Анчурии проходит единый государственный экзамен. Вероятность угадать верный ответ на каждый вопрос экзамена равна 0,25. В 2011 году, чтобы получить аттестат, нужно было ответить верно на три вопроса из 20. В 2012 году Управление школ Анчурии решило, что три вопроса это мало. Теперь нужно верно ответить на шесть вопросов из 40. Спрашивается, если ничего не знать, а просто угадывать ответы, в каком году вероятность получить анчурийский аттестат выше – в 2011 или в 2012?
На борту авиалайнера 2<i>n</i> пассажиров, и авиакомпания загрузила для них <i>n</i> порций питания с курицей и <i>n</i> порций с рыбой. Известно, что пассажир с вероятностью 0,5 предпочитает курицу и с вероятностью 0,5 – рыбу. Назовём пассажира недовольным, если ему осталось не то, что он предпочитает.
а) Найдите наиболее вероятное число недовольных пассажиров.
б) Найдите математическое ожидание числа недовольных пассажиров.
в) Найдите дисперсию числа недовольных пассажиров.
На экзамене даётся три задачи по тригонометрии, две по алгебре и пять по геометрии. Ваня решает задачи по тригонометрии с вероятностью
<i>p</i><sub>1</sub> = 0,2, по геометрии – с вероятностью <i>p</i><sub>2</sub> = 0,4, по алгебре – с вероятностью <i>p</i><sub>3</sub> = 0,5. Чтобы получить тройку, Ване нужно решить не менее пяти задач.
а) С какой вероятностью Ваня решит не менее пяти задач?
Ваня решил усиленно заняться задачами какого-нибудь одного раздела. За неделю он может увеличить вероятность решения заданий этого раздела на 0,2.
б) Каким разделом следует заняться Ване, чтобы вероятность решить не менее пяти задач стала наибольшей?
в) Каким разделом следует заняться Васе, чтобы математическ...
Выведите формулу для чисел Каталана, воспользовавшись результатом задачи <a href="https://mirolimp.ru/tasks/161519">161519</a> и равенством <img align="absmiddle" src="/storage/problem-media/61520/problem_61520_img_2.gif"> где
<img align="absmiddle" src="/storage/problem-media/61520/problem_61520_img_3.gif"> – обобщенные биномиальные коэффициенты.
Определение чисел Каталана можно найти в <a href="https://problems.ru/thes.php?%20letter=23#chisla_catalana">справочнике</a>.
Функции <i>a, b</i> и <i>c</i> заданы рядами <img align="absmiddle" src="/storage/problem-media/61501/problem_61501_img_2.gif"> <img align="absmiddle" src="/storage/problem-media/61501/problem_61501_img_3.gif"> <img align="absmiddle" src="/storage/problem-media/61501/problem_61501_img_4.gif">Докажите, что <i>a</i>³ +<i>b</i>³ +<i>c</i>³ – 3<i>abc</i>= (1 +<i>x</i>³)<sup><i>n</i></sup>.
Предположим, что у нас имеется 1000000 автобусных билетов с номерами от 000000 до 999999. Будем называть билет <i>счастливым</i>, если сумма первых трёх цифр его номера равна сумме трёх последних. Пусть <i>N</i> – количество счастливых билетов. Докажите равенства:
а) (1 + <i>x</i> + ... + <i>x</i><sup>9</sup>)<sup>3</sup>(1 + <i>x</i><sup>–1</sup> + ... + <i>x</i><sup>–9</sup>)<sup>3</sup> = <i>x</i><sup>27</sup> + ... + <i>a</i><sub>1</sub><i>x</i> + <i>N</i> + <i>a</i><sub>1</sub><i>x</i> + ... + <i>x</i><sup>–27</sup>;...
Докажите, что для всех неотрицательных <i>n</i> выполняются равенства а) <img align="absmiddle" src="/storage/problem-media/61496/problem_61496_img_2.gif"> б) <img align="absmiddle" src="/storage/problem-media/61496/problem_61496_img_3.gif">
Пусть <i>a<sub>n</sub></i> – число решений уравнения <i>x</i><sub>1</sub> + ... + <i>x<sub>k</sub></i> = <i>n</i> в целых неотрицательных числах и <i>F</i>(<i>x</i>) – производящая функция последовательности <i>a<sub>n</sub></i>.
а) Докажите равенства: <i>F</i>(<i>x</i>) = (1 + <i>x</i> + <i>x</i>² + ...)<sup><i>k</i></sup> = (1 – <i>x</i>)<sup>–<i>k</i></sup>.
б) Найдите формулу для <i>a<sub>n</sub></i>, пользуясь задачей <a href="https://mirolimp.ru/tasks/161490">161490</a>.
Вычислите суммы:
а) <img align="absmiddle" src="/storage/problem-media/61492/problem_61492_img_2.gif"> б) <img align="absmiddle" src="/storage/problem-media/61492/problem_61492_img_3.gif">
Укажите явный вид коэффициентов в многочленах <i>F<sub>n</sub></i>(<i>x</i>) и <i>L<sub>n</sub></i>(<i>x</i>). Решите задачи <a href="https://mirolimp.ru/tasks/160581">160581</a> и <a href="https://mirolimp.ru/tasks/160582">160582</a>, используя многочлены Фибоначчи.
Про многочлены Фибоначчи и Люка смотри <a href="https://problems.ru/thes.php?letter=12#fibonacci">статьи</a> в справочнике.
При возведении числа 1 + <img width="25" height="36" align="MIDDLE" border="0" src="/storage/problem-media/61463/problem_61463_img_2.gif"> в различные степени, можно обнаружить некоторые закономерности:
(1 + <img width="25" height="38" align="MIDDLE" border="0" src="/storage/problem-media/61463/problem_61463_img_2.gif">)<sup>1</sup> = 1 + <img width="25" height="38" align="MIDDLE" border="0" src="/storage/problem-media/61463/problem_61463_img_2.gif"> = <img width="25" height="38" align="MIDDLE" border="0" src="/storage/problem-media/61463/problem_61463_img_2.g...
Докажите, что если многочлен <i>f</i>(<i>x</i>) степени <i>n</i> принимает целые значения в точках <i>x</i> = 0, 1, ..., <i>n</i>, то он принимает целые значения во всех целых точках.