Олимпиадные задачи по теме «Алгебраические уравнения и системы уравнений» - сложность 1-3 с решениями

Решите уравнение:  <img align="absmiddle" src="/storage/problem-media/116928/problem_116928_img_2.gif">.

На доске записан ряд из чисел и звёздочек: 5, *, *, *, *, *, *, 8. Замените звёздочки числами так, чтобы сумма каждых трёх чисел, стоящих подряд, равнялась 20.

Шесть кружков последовательно соединили отрезками. На каждом отрезке записали некоторое число, а в каждом кружке – сумму двух чисел, записанных на входящих в него отрезках. После этого стёрли все числа на отрезках и в одном из кружков (см. рис.). Можно ли найти число, стёртое в кружке?<div align="center"><img src="/storage/problem-media/116854/problem_116854_img_2.gif"></div>

Ненулевые числа <i>a</i>, <i>b</i>, <i>c</i> таковы, что каждые два из трёх уравнений  <i>ax</i><sup>11</sup> + <i>bx</i><sup>4</sup> + <i>c</i> = 0,  <i>bx</i><sup>11</sup> + <i>cx</i><sup>4</sup> + <i>a</i> = 0,  <i>cx</i><sup>11</sup> + <i>ax</i><sup>4</sup> + <i>b</i> = 0  имеют общий корень. Докажите, что все три уравнения имеют общий корень.

Про три положительных числа известно, что если выбрать одно из них и прибавить к нему сумму квадратов двух других, то получится одна и та же сумма, независимо от выбранного числа. Верно ли, что все числа равны?

Какие значения может принимать выражение  (<i>x – y</i>)(<i>y – z</i>)(<i>z – x</i>),  если известно, что  <img align="absmiddle" src="/storage/problem-media/116451/problem_116451_img_2.gif"> ?

Найдите все неотрицательные решения системы уравнений:

    <i>x</i>³ = 2<i>y</i>² – <i>z</i>,

    <i>y</i>³ = 2<i>z</i>² – <i>x</i>,

    <i>z</i>³ = 2<i>x</i>² – <i>y</i>.

Коля и Вася за ноябрь получили по 15 оценок: тройки, четвёрки и пятёрки. При этом Коля получил пятёрок столько же, сколько Вася четвёрок, четвёрок столько же, сколько Вася троек, а троек столько же, сколько Вася пятёрок. Оказалось, что средний балл за ноябрь у мальчиков одинаковый. Сколько троек получил Коля в ноябре?

Набор чисел<i>a</i><sub>0</sub>,<i>a</i><sub>1</sub>, ...,<i>a<sub>n</sub></i>удовлетворяет условиям:  <i>a</i><sub>0</sub>= 0,  0 ≤<i>a</i><sub><i>k</i>+1</sub>–<i>a<sub>k</sub></i>≤ 1  при  <i>k</i>= 0, 1, ...,<i>n</i>– 1.  Докажите неравенство  <img align="absmiddle" src="/storage/problem-media/110096/problem_110096_img_2.gif">

Набор чисел <i>a</i><sub>0</sub>, <i>a</i><sub>1</sub>, ..., <i>a<sub>n</sub></i> удовлетворяет условиям:  <i>a</i><sub>0</sub> = 0,  <i>a</i><sub><i>k</i>+1</sub> ≥ <i>a</i><sub><i>k</i></sub> + 1  при  <i>k</i> = 0, 1, ..., <i>n</i> – 1.  Докажите неравенство   <img align="absmiddle" src="/storage/problem-media/110087/problem_110087_img_2.gif">

Пусть <i>a, b, c, d, e</i> и <i>f</i> – некоторые числа, причём  <i>ace</i> ≠ 0.  Известно, что значения выражений  |<i>ax + b</i>| + |<i>cx + d</i>|  и  |<i>ex + f</i> |  равны при всех значениях <i>x</i>.

Докажите, что  <i>ad = bc</i>.

Известно, что уравнение  <i>ax</i><sup>5</sup> + <i>bx</i><sup>4</sup> + <i>c</i> = 0  имеет три различных корня. Докажите, что уравнение  <i>cx</i><sup>5</sup> + <i>bx + a</i> = 0  также имеет три различных корня.

Уравнение  <i>x</i>² + <i>ax + b</i> = 0  имеет два различных действительных корня.

Докажите, что уравнение  <i>x</i><sup>4</sup> + <i>ax</i>³ + (<i>b</i> – 2)<i>x</i>² – <i>ax</i> + 1 = 0  имеет четыре различных действительных корня.

Решите в положительных числах систему уравнений     <img src="/storage/problem-media/109538/problem_109538_img_2.gif">

Значение <i>a</i> подобрано так, что число корней первого из уравнений  4<sup><i>x</i></sup> – 4<sup>–<i>x</i></sup> = 2 cos <i>ax</i>,  4<sup><i>x</i></sup> + 4<sup>–<i>x</i></sup> = 2 cos <i>ax</i> + 4  равно 2007.

Сколько корней при том же <i>a</i> имеет второе уравнение?

Решите уравнение:  (<i>x</i>³ – 2)(2<sup>sin <i>x</i></sup> – 1) + (2<sup><i>x</i>³</sup> – 4) sin <i>x</i> = 0.

Решить уравнение  (<i>x</i>² – <i>x</i> + 1)<sup>4</sup> – 10<i>x</i>²(<i>x</i>² – <i>x</i> + 1)² + 9<i>x</i><sup>4</sup> = 0.

Решить систему уравнений     1 − <i>x</i><sub>1</sub><i>x</i><sub>2</sub><i>x</i><sub>3</sub> = 0,

    1 + <i>x</i><sub>2</sub><i>x</i><sub>3</sub><i>x</i><sub>4</sub> = 0,

    1 − <i>x</i><sub>3</sub><i>x</i><sub>4</sub><i>x</i><sub>5</sub> = 0,

    1 + <i>x</i><sub>4</sub><i>x</i><sub>5</sub><i>x</i><sub>6</sub> = 0,

      ...

    1 − <i>x</i><sub>47</sub><i>x</i><sub>48</sub><i>x</i><sub>49</sub> = 0,

    1 + <i&...

Найти все действительные решения системы уравнений

    <i>x</i>² + <i>y</i>² + <i>z</i>² = 1,

    <i>x</i>³ + <i>y</i>³ + <i>z</i>³ = 1.

Решить систему уравнений:

   <i>x</i><sub>1</sub> + 12<i>x</i><sub>2</sub> = 15,

   <i>x</i><sub>1</sub> – 12<i>x</i><sub>2</sub> + 11<i>x</i><sub>3</sub> = 2,

   <i>x</i><sub>1</sub> – 11<i>x</i><sub>3</sub> + 10<i>x</i><sub>4</sub> = 2,

   <i>x</i><sub>1</sub> – 10<i>x</i><sub>4</sub> + 9<i>x</i><sub>5</sub> = 2,

   <i>x</i><sub>1</sub> – 9<i>x</i><sub>5</sub> + 8<i>x</i><sub>6</sub> = 2,

   <i>x</i><sub>1</sub> – 8&...

Найти решение системы

  <i>x</i><sup>4</sup> + <i>y</i><sup>4</sup> = 17,

  <i>x + y</i> = 3.

Решить систему уравнений     <img align="middle" src="/storage/problem-media/108989/problem_108989_img_2.gif">

Решить систему уравнений с <i>n</i> неизвестными   <img align="absmiddle" src="/storage/problem-media/108979/problem_108979_img_2.gif">

Рассматривается выпуклый четырёхугольник <i>ABCD</i>. Пары его противоположных сторон продолжены до пересечения: <i>AB</i> и <i>CD</i> – в точке <i>P, CB</i> и <i>DA</i> – в точке <i>Q</i>. Пусть <i>l<sub>A</sub>, l<sub>B</sub>, l<sub>C</sub></i> и <i>l<sub>D</sub></i> – биссектрисы внешних углов четырёхугольника при вершинах соответственно <i>A, B, C, D</i>. Пусть <i>l<sub>P</sub></i> и <i>l<sub>Q</sub></i> – внешние биссектрисы углов соответственно <i>A<sub>PD</sub></i> и <i>A<sub>QB</sub></i> (то есть биссектрисы углов, дополняющих эти угл...

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка