Олимпиадные задачи из источника «Региональный этап»
Докажите, что любой треугольник можно разрезать не более чем на три части, из которых складывается равнобедренный треугольник.
Можно ли клетки доски 5×5 покрасить в 4 цвета так, чтобы клетки, стоящие на пересечении любых двух строк и любых двух столбцов, были покрашены не менее чем в три цвета?
Натуральное число <i>n</i> назовём хорошим, если каждое из чисел <i>n</i>, <i>n</i> + 1, <i>n</i> + 2 и <i>n</i> + 3 делится на сумму своих цифр. (Например, <i>n</i> = 60398 – хорошее.)
Обязательно ли предпоследней цифрой хорошего числа, оканчивающегося восьмеркой, будет девятка?
Пусть <i>a, b, c, d, e</i> и <i>f</i> – некоторые числа, причём <i>ace</i> ≠ 0. Известно, что значения выражений |<i>ax + b</i>| + |<i>cx + d</i>| и |<i>ex + f</i> | равны при всех значениях <i>x</i>.
Докажите, что <i>ad = bc</i>.
Уголком размера<i> n</i>×<i>m </i>, где<i> m,n<img src="/storage/problem-media/110080/problem_110080_img_2.gif"></i>2, называется фигура, получаемая из прямоугольника размера<i>n</i>×<i>m</i>клеток удалением прямоугольника размера (<i>n-</i>1)×(<i>m-</i>1) клеток. Два игрока по очереди делают ходы, заключающиеся в закрашивании в уголке произвольного ненулевого количества клеток, образующих прямоугольник или квадрат. Пропускать ход или красить одну клетку дважды нельзя. Проигрывает тот, после чьего хода все клетки уголка окажутся окрашенными. Кто из игроков победит при правильной игре?
Все стороны выпуклого пятиугольника равны, а все углы различны. Докажите, что максимальный и минимальный углы прилегают к одной стороне пятиугольника.
<i> N </i>цифр – единицы и двойки – расположены по кругу. Изображенным назовем число, образуемое несколькими цифрами, расположенными подряд (по часовой стрелке или против часовой стрелки). При каком наименьшем значении<i> N </i>все четырехзначные числа, запись которых содержит только цифры 1 и 2, могут оказаться среди изображенных?
Можно ли числа 1, 2, ..., 10 расставить в ряд в некотором порядке так, чтобы каждое из них, начиная со второго, отличалось от предыдущего на целое число процентов?
Саша написал на доске ненулевую цифру и приписывает к ней справа по одной ненулевой цифре, пока не выпишет миллион цифр. Докажите, что на доске не более 100 раз был написан точный квадрат.
Существует ли такое натуральное число, что произведение всех его натуральных делителей (включая 1 и само число) оканчивается ровно на 2001 ноль?
Мишень представляет собой треугольник, разбитый тремя семействами параллельных прямых на 100 равных правильных треугольничков с единичными сторонами. Снайпер стреляет по мишени. Он целится в треугольничек и попадает либо в него, либо в один из соседних с ним по стороне. Он видит результаты своей стрельбы и может выбирать, когда стрельбу заканчивать. Какое наибольшее число треугольничков он может с гарантией поразить ровно пять раз?
Петя и Коля играют в следующую игру: они по очереди изменяют один из коэффициентов <i>a</i> или <i>b</i> квадратного трёхчлена <i>x</i>² + <i>ax + b</i>: Петя на 1, Коля – на 1 или на 3. Коля выигрывает, если после хода одного из игроков получается трёхчлен, имеющий целые корни. Верно ли, что Коля может выиграть при любых начальных целых коэффициентах <i>a</i> и <i>b</i> независимо от игры Пети?
На окружности расположена тысяча непересекающихся дуг, и на каждой из них написаны два натуральных числа. Сумма чисел каждой дуги делится на произведение чисел дуги, следующей за ней по часовой стрелке. Каково наибольшее возможное значение наибольшего из написанных чисел?
Множество клеток на клетчатой плоскости назовем <i>ладейно связным</i>, если из каждой его клетки можно попасть в любую другую, двигаясь по клеткам этого множества ходом ладьи (ладье разрешается перелетать через поля, не принадлежащие нашему множеству). Докажите, что ладейно связное множество из 100 клеток можно разбить на пары клеток, лежащих в одной строке или в одном столбце.
Даны целые числа <i>a, b</i> и <i>c, c ≠ b</i>. Известно, что квадратные трёхчлены <i>ax</i>² + <i>bx + c</i> и (<i>c – b</i>)<i>x</i>² + (<i>c – a</i>)<i>x</i> + (<i>a + b</i>) имеют общий корень (не обязательно целый). Докажите, что <i>a + b</i> + 2<i>c</i> делится на 3.
Проведено три семейства параллельных прямых, по 10 прямых в каждом. Какое наибольшее число треугольников они могут вырезать из плоскости?
Опишите все способы покрасить каждое натуральное число в один из трёх цветов так, чтобы выполнялось условие: если числа <i>a, b</i> и <i>c</i> (не обязательно различные) удовлетворяют условию 2000(<i>a + b</i>) = <i>c</i>, то они либо все одного цвета, либо трёх разных цветов.
Длины сторон многоугольника равны <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, ..., <i>a<sub>n</sub></i>. Квадратный трёхчлен <i>f</i>(<i>x</i>) таков, что <i>f</i>(<i>a</i><sub>1</sub>) = <i>f</i>(<i>a</i><sub>2</sub> + ... + <i>a<sub>n</sub></i>).
Докажите, что если <i>A</i> – сумма длин нескольких сторон многоугольника, <i>B</i> – сумма длин остальных его сторон, то <i>f</i>(<i>A</i>) = <i>f</i>(<i>B</i>).
Докажите, что в любом множестве, состоящем из 117 попарно различных трёхзначных чисел, можно выбрать четыре попарно непересекающихся подмножества, суммы чисел в которых равны.
На плоскости дано бесконечное множество точек<i> S </i>, при этом в любом квадрате1×1лежит конечное число точек из множества<i> S </i>. Докажите, что найдутся две разные точки<i> A </i>и<i> B </i>из<i> S </i>такие, что для любой другой точки<i> X </i>из<i> S </i>выполняются неравенства: <center><i>
|XA|,|XB|<img src="/storage/problem-media/110060/problem_110060_img_2.gif"> </i>0<i>,</i>999<i>|AB|. </i></center>
Докажите, что если у тетраэдра два отрезка, идущие из концов некоторого ребра в центры вписанных окружностей противолежащих граней, пересекаются, то отрезки, выпущенные из концов скрещивающегося с ним ребра в центры вписанных окружностей двух других граней, также пересекаются.
Дана последовательность<i> {x<sub>k</sub>} </i>такая, что<i> x<sub>1</sub>=</i>1,<i> x<sub>n+</sub></i>1<i>=n sin x<sub>n</sub>+</i>1. Докажите, что последовательность непериодична.
Приведённый квадратный трёхчлен <i>f</i>(<i>x</i>) имеет два различных корня. Может ли так оказаться, что уравнение <i>f</i>(<i>f</i>(<i>x</i>)) = 0 имеет три различных корня, а уравнение <i>f</i>(<i>f</i>(<i>f</i>(<i>x</i>))) = 0 – семь различных корней?
Найдите все такие простые числа <i>p</i> и <i>q</i> , что <i>p + q</i> = (<i>p – q</i>)³.
Пусть<i> AD </i>– биссектриса треугольника<i> ABC </i>и прямая<i> l </i>касается окружностей, описанных около треугольников<i> ADB </i>и<i> ADC </i>, в точках<i> M </i>и<i> N </i>соответственно. Докажите, что окружность, проходящая через середины отрезков<i> BD </i>,<i> DC </i>и<i> MN </i>касается прямой<i> l </i>.