Олимпиадные задачи из источника «Региональный этап» - сложность 4 с решениями
Саша написал на доске ненулевую цифру и приписывает к ней справа по одной ненулевой цифре, пока не выпишет миллион цифр. Докажите, что на доске не более 100 раз был написан точный квадрат.
На окружности расположена тысяча непересекающихся дуг, и на каждой из них написаны два натуральных числа. Сумма чисел каждой дуги делится на произведение чисел дуги, следующей за ней по часовой стрелке. Каково наибольшее возможное значение наибольшего из написанных чисел?
На плоскости дано бесконечное множество точек<i> S </i>, при этом в любом квадрате1×1лежит конечное число точек из множества<i> S </i>. Докажите, что найдутся две разные точки<i> A </i>и<i> B </i>из<i> S </i>такие, что для любой другой точки<i> X </i>из<i> S </i>выполняются неравенства: <center><i>
|XA|,|XB|<img src="/storage/problem-media/110060/problem_110060_img_2.gif"> </i>0<i>,</i>999<i>|AB|. </i></center>
Пусть<i> AD </i>– биссектриса треугольника<i> ABC </i>и прямая<i> l </i>касается окружностей, описанных около треугольников<i> ADB </i>и<i> ADC </i>, в точках<i> M </i>и<i> N </i>соответственно. Докажите, что окружность, проходящая через середины отрезков<i> BD </i>,<i> DC </i>и<i> MN </i>касается прямой<i> l </i>.
В параллелограмме<i> ABCD </i>на диагонали<i> AC </i>отмечена точка<i> K </i>. Окружность<i> s</i>1проходит через точку<i> K </i>и касается прямых<i> AB </i>и<i> AD </i>, причём вторая точка пересечения<i> s</i>1с диагональю<i> AC </i>лежит на отрезке<i> AK </i>. Окружность<i> s</i>2проходит через точку<i> K </i>и касается прямых<i> CB </i>и<i> CD </i>, причём вторая точка пересечения<i> s</i>2с диагональю<i> AC </i>лежит на отрезке<i> KC </i>. Докажите, что при всех положениях точки<i> K </i>на диагонали<i> AC </i>прямые, соединяющие центры окружностей<i> s&...