Олимпиадные задачи по математике
Все стороны выпуклого пятиугольника равны, а все углы различны. Докажите, что максимальный и минимальный углы прилегают к одной стороне пятиугольника.
Найдите все такие нечётные натуральные <i>n</i> > 1, что для любых взаимно простых делителей <i>a</i> и <i>b</i> числа <i>n</i> число <i>a + b</i> – 1 также является делителем <i>n</i>.
Найдите все такие натуральные числа <i>n</i>, что для любых двух его взаимно простых делителей <i>a</i> и <i>b</i> число <i>a + b</i> – 1 также является делителем <i>n</i>.
Докажите, что можно разбить все множество натуральных чисел на 100 непустых подмножеств так, чтобы в любой тройке <i>a, b, c</i>, для которой <i>a</i> + 99<i>b = c</i>, нашлись два числа из одного подмножества.