Олимпиадная задача: хорошие числа и делимость — систем счисления, 7–9 класс
Задача
Натуральное число n назовём хорошим, если каждое из чисел n, n + 1, n + 2 и n + 3 делится на сумму своих цифр. (Например, n = 60398 – хорошее.)
Обязательно ли предпоследней цифрой хорошего числа, оканчивающегося восьмеркой, будет девятка?
Решение
Допустим, что нашлось хорошее число n = a1...ak8, где a1, ..., ak – цифры, причём ak ≠ 9. Тогда n + 1 = a1...ak9, n + 3 = a1...ak–1bk1, где bk = ak + 1. Числа n + 1 и n + 3 нечётны, а суммы их цифр равны a1 + a2 + ... + ak + 9 и a1 + a2 + ... + ak + 2 соответственно. Эти суммы отличаются на 7, и потому одна из них чётна. Но чётное число не может быть делителем нечётного. Противоречие.
Ответ
Обязательно.
Чтобы оставлять комментарии, войдите или зарегистрируйтесь
Комментариев нет