Олимпиадные задачи из источника «III Олимпиада по геометрии имени И.Ф. Шарыгина (2007 г.)»
III Олимпиада по геометрии имени И.Ф. Шарыгина (2007 г.)
НазадНа плоскости лежат три трубы (круговые цилиндры одного размера в обхвате 4 м). Две из них лежат параллельно и, касаясь друг друга по общей образующей, образуют над плоскостью тоннель. Третья, перпендикулярная к первым двум, вырезает в тоннеле камеру. Найдите площадь границы этой камеры.
Основанием пирамиды является правильный треугольник со стороной 1. Из трёх углов при вершине пирамиды два – прямые.
Найдите наибольший объём пирамиды.
В угол <i>A</i>, равный α, вписана окружность, касающаяся его сторон в точках <i>B</i> и <i>C</i>. Прямая, касающаяся окружности в некоторой точке <i>M</i>, пересекает отрезки <i>AB</i> и <i>AC</i> в точках <i>Р</i> и <i>Q</i> соответственно. При каких α может быть выполнено неравенство <i>S<sub>PAQ</sub> < S<sub>BMC</sub></i>?
Найдите геометрическое место вершин треугольников с заданными ортоцентром и центром описанной окружности.
Какие треугольники можно разрезать на три треугольника с равными радиусами описанных окружностей?
На сторонах угла взяты точки <i>A, B</i>. Через середину <i>M</i> отрезка <i>AB</i> проведены две прямые, одна из которых пересекает стороны угла в точках <i>A</i><sub>1</sub>, <i>B</i><sub>1</sub>, другая – в точках <i>A</i><sub>2</sub> , <i>B</i><sub>2</sub>. Прямые <i>A</i><sub>1</sub><i>B</i><sub>2</sub> и <i>A</i><sub>2</sub><i>B</i><sub>1</sub> пересекают <i>AB</i> в точках <i>P</i> и <i>Q</i>. Докажите, что <i>M</i> – середина <i>PQ</i>.
В треугольнике <i>ABC</i> проведены биссектрисы <i>AA', BB'</i> и <i>CC'</i>. Пусть <i>P</i> – точка пересечения <i>A'B'</i> и <i>CC'</i>, а <i>Q</i> – точка пересечения <i>A'C'</i> и <i>BB'</i>.
Докажите, что ∠<i>PAC</i> = ∠<i>QAB</i>.
В трапеции <i>ABCD</i> с основаниями <i>AD</i> и <i>BC</i> <i>P</i> и <i>Q</i> – середины диагоналей <i>AC</i> и <i>BD</i> соответственно. Докажите, что если ∠<i>DAQ</i> = ∠<i>CAB</i>, то ∠<i>PBA</i> = ∠<i>DBC</i>.
На стороне <i>AB</i> треугольника <i>ABC</i> взяты такие точки <i>X</i>, <i>Y</i>, что <i>AX = BY</i>. Прямые <i>CX</i> и <i>CY</i> вторично пересекают описанную окружность треугольника в точках <i>U</i> и <i>V</i>. Докажите, что все прямые <i>UV</i> проходят через одну точку.
Дан прямоугольник <i>ABCD</i> и точка <i>P</i>. Прямые, проходящие через <i>A</i> и <i>B</i> и перпендикулярные, соответственно, <i>PC</i> и <i>PD</i>, пересекаются в точке <i>Q</i>.
Докажите, что <i>PQ</i> ⊥ <i>AB</i>.
Мальчик с папой стоят на берегу моря. Если мальчик встанет на цыпочки, его глаза будут на высоте 1 м от поверхности моря, а если сядет папе на плечи, то на высоте 2 м. Во сколько раз дальше он будет видеть во втором случае. (Найдите ответ с точностью до 0,1, радиус Земли считайте равным 6000 км.)
Найдите геометрическое место центров правильных треугольников, стороны которых проходят через три заданные точки <i>A, B, C</i> (то есть на каждой стороне или ее продолжении лежит ровно одна из заданных точек).
Два выпуклых четырёхугольника таковы, что стороны каждого лежат на серединных перпендикулярах к сторонам другого. Найдите их углы.
Три окружности проходят через точку <i>P</i>, а вторые точки их пересечения <i>A, B, C</i> лежат на одной прямой. <i>A</i><sub>1</sub>, <i>B</i><sub>1</sub>, <i>C</i><sub>1</sub> – вторые точки пересечения прямых <i>AP, BP, CP</i> с соответствующими окружностями. <i>C</i><sub>2</sub> – точка пересечения прямых <i>AB</i><sub>1</sub> и <i>BA</i><sub>1</sub>. <i>A</i><sub>2</sub>, <i>B</i><sub>2</sub> определяются аналогично.
Докажите, что треугольники <i>A</i><sub>1</sub><i>B</i><sub>1</sub><i>C</i><sub...
Выпуклый многоугольник описан около окружности. Точки касания его сторон с окружностью образуют многоугольник с таким же набором углов (порядок углов может быть другим). Верно ли, что многоугольник правильный?
Невыпуклый <i>n</i>-угольник разрезали прямолинейным разрезом на три части, после чего из двух частей сложили многоугольник, равный третьей части. Может ли <i>n</i> равняться
а) 5?
б) 4?
Существует ли такой параллелограмм, что все точки попарных пересечений биссектрис его углов лежат вне параллелограмма?
Отрезки, соединяющие внутреннюю точку выпуклого неравностороннего <i>n</i>-угольника с его вершинами, делят <i>n</i>-угольник на <i>n</i> равных треугольников.
При каком наименьшем <i>n</i> это возможно?
Каждая диагональ четырёхугольника разбивает его на два равнобедренных треугольника. Верно ли, что четырёхугольник – ромб?
Треугольник разрезан на несколько (не менее двух) треугольников. Один из них равнобедренный (не равносторонний), а остальные – равносторонние. Найдите углы исходного треугольника.
Куб с ребром2<i>n+</i>1разрезают на кубики с ребром 1 и бруски размера2<i>x </i>2<i>x </i>1. Какое наименьшее количество единичных кубиков может при этом получиться?
Постройте треугольник, если даны центр вписанной в него окружности, середина одной из сторон и основание опущенной на эту сторону высоты.
Дан треугольник <i>ABC</i>. Точка <i>P</i> лежит на описанной окружности треугольника <i>ABH</i>, где <i>H</i> – ортоцентр треугольника <i>ABC</i>. Прямые <i>AP, BP</i> пересекают противоположные стороны треугольника в точках <i>A', B'</i>. Найдите геометрическое место середин отрезков <i>A'B'</i>.
В шестиугольнике <i>ABCDEF AB = BC, CD = DE, EF = FA</i> и ∠<i>A</i> = ∠<i>C</i> = ∠<i>E</i>.
Докажите, что главные диагонали шестиугольника пересекаются в одной точке.
На основании <i>AD</i> и боковой стороне <i>AB</i> равнобедренной трапеции <i>ABCD</i> взяты точки <i>E, F</i> соответственно так, что <i>CDEF</i> – также равнобедренная трапеция. Докажите, что <i>AE·ED = AF·FB</i>.