Олимпиадные задачи по математике

Дан треугольник <i>ABC</i>. Точка <i>P</i> лежит на описанной окружности треугольника <i>ABH</i>, где <i>H</i> – ортоцентр треугольника <i>ABC</i>. Прямые <i>AP, BP</i> пересекают противоположные стороны треугольника в точках <i>A', B'</i>. Найдите геометрическое место середин отрезков <i>A'B'</i>.

Окружности $\alpha$, $\beta$, $\gamma$ касаются друг друга внешним образом и касаются изнутри окружности $\Omega$ в точках $A_1$, $B_1$, $C_1$ соответственно. Общая внутренняя касательная к $\alpha$ и $\beta$ пересекает не содержащую $C_1$ дугу $A_1B_1$ в точке $C_2$. Точки $A_2$, $B_2$ определяются аналогично. Докажите, что прямые $A_1A_2$, $B_1B_2$, $C_1C_2$ пересекаются в одной точке.

Вокруг треугольника <i>ABC</i> с острым углом <i>C</i> описана окружность. На дуге <i>AB</i>, не содержащей точку <i>C</i>, выбрана точка <i>D</i>. Точка <i>D'</i> симметрична точке <i>D</i> относительно прямой <i>AB</i>. Прямые <i>AD'</i> и <i>BD'</i> пересекают стороны <i>BC</i> и <i>AC</i> в точках <i>E</i> и <i>F</i>. Пусть точка <i>C</i> движется по своей дуге <i>AB</i>. Докажите, что центр описанной окружности треугольника <i>CEF</i> движется по прямой.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка