Олимпиадные задачи из источника «Окружная олимпиада (Москва)» для 8 класса - сложность 2-3 с решениями

Точка <i>K</i> – середина гипотенузы <i>АВ</i> прямоугольного треугольника <i>АВС</i>. На катетах <i>АС</i> и <i>ВС</i> выбраны точки <i>М</i> и <i>N</i> соответственно так, что угол <i>МKN</i> – прямой. Докажите, что из отрезков <i>АМ, ВN</i> и <i>MN</i> можно составить прямоугольный треугольник.

Десять футбольных команд сыграли каждая с каждой по одному разу. В результате у каждой команды оказалось ровно по <i>х</i> очков.

Каково наибольшее возможное значение <i>х</i>? (Победа – 3 очка, ничья – 1 очко, поражение – 0.)

В трапеции <i>ABCD</i> основание <i>BC</i> в два раза меньше основания <i>AD</i>. Из вершины <i>D</i> опущен перпендикуляр <i>DE</i> на сторону <i>AB</i>. Докажите, что  <i>СЕ = CD</i>.

Шесть кружков последовательно соединили отрезками. На каждом отрезке записали некоторое число, а в каждом кружке – сумму двух чисел, записанных на входящих в него отрезках. После этого стёрли все числа на отрезках и в одном из кружков (см. рис.). Можно ли найти число, стёртое в кружке?<div align="center"><img src="/storage/problem-media/116854/problem_116854_img_2.gif"></div>

Через концы основания <i>BC</i> трапеции <i>ABCD</i> провели окружность, которая пересекла боковые стороны <i>AB</i> и <i>CD</i> в точках <i>M</i> и <i>N</i> соответственно. Известно, что точка <i>T</i> пересечения отрезков <i>AN</i> и <i>DM</i> также лежит на этой окружности. Докажите, что  <i>TB</i> = <i>TC</i>.

Могут ли все корни уравнений  <i>x</i>² – <i>px + q</i> = 0  и  <i>x</i>² – (<i>p</i> + 1)<i>x + q</i> = 0  оказаться целыми числами, если:

  а)  <i>q</i> > 0;

  б)  <i>q</i> < 0?

Под ёлкой лежат 2012 шишек. Винни-Пух и ослик Иа-Иа играют в игру: по очереди берут себе шишки. Своим ходом Винни-Пух берёт одну или четыре шишки, а Иа-Иа – одну или три. Первым ходит Пух. Проигравшим считается тот, у кого нет хода. Кто из игроков сможет гарантированно победить, как бы ни играл соперник?

В параллелограмме <i>ABCD</i> диагональ <i>АС</i> в два раза больше стороны <i>АВ</i>. На стороне <i>BC</i> выбрана точка <i>K</i> так, что  ∠<i>KDB</i> = ∠<i>BDA</i>.

Найдите отношение  <i>BK</i> : <i>KC</i>.

В окружности с центром <i>O</i> проведена хорда <i>AB</i> и радиус <i>OK</i>, пересекающий её под прямым углом в точке <i>M</i>. На большей дуге <i>AB</i> окружности выбрана точка <i>P</i>, отличная от середины этой дуги. Прямая <i>PM</i> вторично пересекает окружность в точке <i>Q</i>, а прямая <i>PK</i> пересекает <i>AB</i> в точке <i>R</i>. Докажите, что  <i>KR > MQ</i>.

Есть 100 коробок, пронумерованных числами от 1 до 100. В одной коробке лежит приз и ведущий знает, где он находится. Зритель может послать ведущему пачку записок с вопросами, требующими ответа "да" или "нет". Ведущий перемешивает записки в пачке и, не оглашая вслух вопросов, честно отвечает на все. Какое наименьшее количество записок нужно послать, чтобы наверняка узнать, где находится приз?

На сторонах <i>AC</i> и <i>BC</i> треугольника <i>ABC</i> выбраны точки <i>M</i> и <i>N</i> соответственно так, что  <i>MN || AB</i>.  На стороне <i>AC</i> отмечена точка <i>K</i> так, что  <i>CK = AM</i>.  Отрезки <i>AN</i> и <i>BK</i> пересекаются в точке <i>F</i>. Докажите, что площади треугольника <i>ABF</i> и четырёхугольника <i>KFNC</i> равны.

Какое наибольшее количество клеток можно отметить на шахматной доске так, чтобы с каждой из них на любую другую отмеченную клетку можно было пройти ровно двумя ходами шахматного коня?

<i>AL</i> – биссектриса треугольника <i>ABC, K</i> – такая точка на стороне <i>AC</i>, что  <i>CK = CL</i>.  Прямая <i>KL</i> и биссектриса угла <i>B</i> пересекаются в точке <i>P</i>.

Докажите, что  <i>AP = PL</i>.

Незнайка утверждает, что существует восемь таких последовательных натуральных чисел, что в разложение их на простые множители каждый множитель входит в нечётной степени (например, два таких последовательных числа:  23 = 23<sup>1</sup>  и  24 = 2³·3<sup>1</sup>).  Прав ли он?

В трапеции <i>ABCD</i> основание <i>AD</i> в четыре раза больше чем <i>BC</i>. Прямая, проходящая через середину диагонали <i>BD</i> и параллельная <i>AB</i>, пересекает сторону <i>CD</i> в точке <i>K</i>. Найдите отношение <i>DK</i> : <i>KC</i>.

Диагонали параллелограмма <i>ABCD</i> пересекаются в точке <i>O</i>. На продолжении стороны <i>AB</i> за точку <i>B</i> отмечена такая точка <i>M</i>, что  <i>MC = MD</i>.

Докажите, что  ∠<i>AMO</i> = ∠<i>MAD</i>.

В какое наибольшее количество цветов можно раскрасить клетки шахматной доски 8×8 так, чтобы каждая клетка граничила по стороне хотя бы с двумя клетками того же цвета?

Назовём натуральное семизначное число <i>удачным</i>, если оно делится на произведение всех своих цифр. Существуют ли четыре последовательных удачных числа?

На стороне <i>AB</i> треугольника <i>ABC</i> отмечена точка <i>K</i>. Отрезок <i>CK</i> пересекает медиану <i>AM</i> треугольника в точке <i>P</i>. Оказалось, что  <i>AK = AP</i>.

Найдите отношение  <i>BK</i> : <i>PM</i>.

Из пункта<i>А</i>в пункт<i>В</i>вышел пешеход. Одновременно с ним из<i>В</i>в<i>А</i>выехал велосипедист. Через час пешеход оказался ровно посередине между пунктом<i>А</i>и велосипедистом. Ещё через 15 минут они встретились, и каждый продолжил свой путь. Сколько времени потратил пешеход на путь из<i>А</i>до<i>В</i>? (Скорости пешехода и велосипедиста постоянны.)

Шестизначное табло в автомобиле показывает, сколько километров автомобиль проехал с момента покупки. Сейчас на нем высвечивается число, в котором есть четыре "семёрки". Может ли оказаться так, что еще через900 км на табло высветится число, в котором ровно одна "семерка"?

Саша выложил треугольник со стороной из нескольких спичек, разделённый на маленькие треугольники (см. рис.), а Петя – такой же треугольник, сторона которого на три спички больше. Петя считает, что для этого ему потребовалось на 111 спичек больше чем Саше, а Саша с ним не согласен. Кто из мальчиков прав?<div align="center"><img src="/storage/problem-media/115472/problem_115472_img_2.gif"></div>

На дне рождения у Васи было 10 ребят (включая Васю). Оказалось, что у каждых двух из этих ребят есть общий дедушка.

Докажите, что у семи из них есть общий дедушка.

Представьте числовое выражение  2·2009² + 2·2010²  в виде суммы квадратов двух натуральных чисел. .

Школьный чемпионат по настольному теннису проводили по олимпийской системе. Победитель выиграл шесть партий. Сколько участников турнира выиграло игр больше, чем проиграло? (На турнире по олимпийской системе участников разбивают на пары. Те, кто проиграл игру в первом туре, выбывают. Тех, кто выиграл в первом туре, снова разбивают на пары. Те, кто проиграл во втором туре, выбывают и т. д. В каждом туре для каждого участника нашлась пара.)

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка