Олимпиадные задачи из источника «глава 11. Задачи на максимум и минимум» - сложность 3 с решениями
Докажите, что из всех треугольников данного периметра 2<i>p</i> равносторонний имеет наибольшую плошадь.
Треугольники<i>ABC</i><sub>1</sub>и<i>ABC</i><sub>2</sub>имеют общее основание<i>AB</i>и $\angle$<i>AC</i><sub>1</sub><i>B</i>=$\angle$<i>AC</i><sub>2</sub><i>B</i>. Докажите, что если|<i>AC</i><sub>1</sub>-<i>C</i><sub>1</sub><i>B</i>| < |<i>AC</i><sub>2</sub>-<i>C</i><sub>2</sub><i>B</i>|, то: а) площадь треугольника<i>ABC</i><sub>1</sub>больше площади треугольника<i>ABC</i><sub>2</sub>; б) периметр треугольника<i>ABC</i><sub>1</sub>больше периметра треугольника<i...
Чему равно наибольшее число клеток шахматной доски размером 8×8, которые можно разрезать одной прямой?
В городе 10 улиц, параллельных друг другу, и 10 улиц, пересекающих их под прямым углом. Какое наименьшее число поворотов может иметь замкнутый автобусный маршрут, проходящий через все перекрестки?
Точки <i>A</i>,<i>B</i>и <i>O</i>не лежат на одной прямой. Проведите через точку <i>O</i>прямую <i>l</i>так, чтобы сумма расстояний от нее до точек <i>A</i>и <i>B</i>была: а) наибольшей; б) наименьшей.
Даны прямая <i>l</i>и точки <i>P</i>и <i>Q</i>, лежащие по одну сторону от нее. На прямой <i>l</i>берем точку <i>M</i>и в треугольнике<i>PQM</i>проводим высоты<i>PP'</i>и<i>QQ'</i>. При каком положении точки <i>M</i>длина отрезка<i>P'Q'</i>минимальна?
На плоскости даны прямая <i>l</i>и точки <i>A</i>и <i>B</i>, лежащие по разные стороны от нее. Постройте окружность, проходящую через точки <i>A</i>и <i>B</i>так, чтобы прямая <i>l</i>высекала на ней хорду наименьшей длины.
Среди всех многоугольников, вписанных в данную окружность, найдите тот, у которого максимальна сумма квадратов длин сторон.
Внутри острого угла<i>BAC</i>дана точка <i>M</i>. Постройте на сторонах<i>BA</i>и <i>AC</i>точки <i>X</i>и <i>Y</i>так, чтобы периметр треугольника<i>XYM</i>был минимальным.
Даны угол<i>XAY</i>и окружность внутри его. Постройте точку окружности, сумма расстояний от которой до прямых<i>AX</i>и<i>AY</i>минимальна.
Дан угол<i>XAY</i>и точка <i>O</i>внутри его. Проведите через точку <i>O</i>прямую, отсекающую от данного угла треугольник наименьшей площади.
Из точки <i>M</i>, лежащей внутри данного треугольника <i>ABC</i>, опущены перпендикуляры <i>MA</i><sub>1</sub>, <i>MB</i><sub>1</sub>, <i>MC</i><sub>1</sub> на прямые <i>BC, CA, AB</i>. Для каких точек <i>M</i> внутри данного треугольника <i>ABC</i> величина <img align="absmiddle" src="/storage/problem-media/57540/problem_57540_img_2.gif"> принимает наименьшее значение?
Точки <i>A</i><sub>1</sub>, <i>B</i><sub>1</sub> и <i>C</i><sub>1</sub> взяты на сторонах <i>BC, CA</i> и <i>AB</i> треугольника <i>ABC</i>, причём отрезки <i>AA</i><sub>1</sub>, <i>BB</i><sub>1</sub> и <i>CC</i><sub>1</sub> пересекаются в одной точке <i>M</i>.
При каком положении точки <i>M</i> величина <sup><i>MA</i><sub>1</sub></sup>/<sub><i>AA</i><sub>1</sub></sub>·<sup><i>MB</i><sub>1</sub></sup>/<sub><i>BB</i><sub>1</sub></sub>·<sup>...
Внутри треугольника <i>ABC</i> взята точка <i>O</i>. Пусть <i>d<sub>a</sub>, d<sub>b</sub>, d<sub>c</sub></i> – расстояния от нее до прямых <i>BC, CA, AB</i>.
При каком положении точки <i>O</i> произведение <i>d<sub>a</sub>d<sub>b</sub>d<sub>c</sub></i> будет наибольшим?
Из точки <i>M</i>описанной окружности треугольника<i>ABC</i>опущены перпендикуляры<i>MP</i>и<i>MQ</i>на прямые<i>AB</i>и<i>AC</i>. При каком положении точки <i>M</i>длина отрезка<i>PQ</i>максимальна?
Докажите, что если α, β, γ и α<sub>1</sub>, β<sub>1</sub>, γ<sub>1</sub> – углы двух треугольников, то <sup>cos α<sub>1</sub></sup>/<sub>sin α</sub> + <sup>cos β<sub>1</sub></sup>/<sub>sin β</sub> + <sup>cos γ<sub>1</sub></sup>/<sub>sin γ</sub> ≤ ctg α + ctg β + ctg γ.
Периметр треугольника<i>ABC</i>равен 2<i>p</i>. На сторонах<i>AB</i>и<i>AC</i>взяты точки <i>M</i>и <i>N</i>так, что<i>MN</i>|<i>BC</i>и<i>MN</i>касается вписанной окружности треугольника<i>ABC</i>. Найдите наибольшее значение длины отрезка<i>MN</i>.
Среди всех треугольников, вписанных в данную окружность, найдите тот, у которого максимальна сумма квадратов длин сторон.