Олимпиадные задачи из источника «параграф 5. Многоугольники»

Дан выпуклый многоугольник<i>A</i><sub>1</sub>...<i>A</i><sub>n</sub>. Докажите, что точка многоугольника, для которой максимальна сумма расстояний от нее до всех вершин, является вершиной.

Среди всех многоугольников, вписанных в данную окружность, найдите тот, у которого максимальна сумма квадратов длин сторон.

Многоугольник имеет центр симметрии <i>O</i>. Докажите, что сумма расстояний до вершин минимальна для точки <i>O</i>.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка