Олимпиадные задачи по теме «Алгебраические уравнения и системы уравнений» для 7-8 класса - сложность 1-3 с решениями

Решите уравнение:  <img align="absmiddle" src="/storage/problem-media/116928/problem_116928_img_2.gif">.

Шесть кружков последовательно соединили отрезками. На каждом отрезке записали некоторое число, а в каждом кружке – сумму двух чисел, записанных на входящих в него отрезках. После этого стёрли все числа на отрезках и в одном из кружков (см. рис.). Можно ли найти число, стёртое в кружке?<div align="center"><img src="/storage/problem-media/116854/problem_116854_img_2.gif"></div>

Про три положительных числа известно, что если выбрать одно из них и прибавить к нему сумму квадратов двух других, то получится одна и та же сумма, независимо от выбранного числа. Верно ли, что все числа равны?

Какие значения может принимать выражение  (<i>x – y</i>)(<i>y – z</i>)(<i>z – x</i>),  если известно, что  <img align="absmiddle" src="/storage/problem-media/116451/problem_116451_img_2.gif"> ?

Коля и Вася за ноябрь получили по 15 оценок: тройки, четвёрки и пятёрки. При этом Коля получил пятёрок столько же, сколько Вася четвёрок, четвёрок столько же, сколько Вася троек, а троек столько же, сколько Вася пятёрок. Оказалось, что средний балл за ноябрь у мальчиков одинаковый. Сколько троек получил Коля в ноябре?

Пусть <i>a, b, c, d, e</i> и <i>f</i> – некоторые числа, причём  <i>ace</i> ≠ 0.  Известно, что значения выражений  |<i>ax + b</i>| + |<i>cx + d</i>|  и  |<i>ex + f</i> |  равны при всех значениях <i>x</i>.

Докажите, что  <i>ad = bc</i>.

Известно, что уравнение  <i>ax</i><sup>5</sup> + <i>bx</i><sup>4</sup> + <i>c</i> = 0  имеет три различных корня. Докажите, что уравнение  <i>cx</i><sup>5</sup> + <i>bx + a</i> = 0  также имеет три различных корня.

Уравнение  <i>x</i>² + <i>ax + b</i> = 0  имеет два различных действительных корня.

Докажите, что уравнение  <i>x</i><sup>4</sup> + <i>ax</i>³ + (<i>b</i> – 2)<i>x</i>² – <i>ax</i> + 1 = 0  имеет четыре различных действительных корня.

Решите в положительных числах систему уравнений     <img src="/storage/problem-media/109538/problem_109538_img_2.gif">

Решить систему уравнений     1 − <i>x</i><sub>1</sub><i>x</i><sub>2</sub><i>x</i><sub>3</sub> = 0,

    1 + <i>x</i><sub>2</sub><i>x</i><sub>3</sub><i>x</i><sub>4</sub> = 0,

    1 − <i>x</i><sub>3</sub><i>x</i><sub>4</sub><i>x</i><sub>5</sub> = 0,

    1 + <i>x</i><sub>4</sub><i>x</i><sub>5</sub><i>x</i><sub>6</sub> = 0,

      ...

    1 − <i>x</i><sub>47</sub><i>x</i><sub>48</sub><i>x</i><sub>49</sub> = 0,

    1 + <i&...

Найти все действительные решения системы уравнений

    <i>x</i>² + <i>y</i>² + <i>z</i>² = 1,

    <i>x</i>³ + <i>y</i>³ + <i>z</i>³ = 1.

Решить систему уравнений:

   <i>x</i><sub>1</sub> + 12<i>x</i><sub>2</sub> = 15,

   <i>x</i><sub>1</sub> – 12<i>x</i><sub>2</sub> + 11<i>x</i><sub>3</sub> = 2,

   <i>x</i><sub>1</sub> – 11<i>x</i><sub>3</sub> + 10<i>x</i><sub>4</sub> = 2,

   <i>x</i><sub>1</sub> – 10<i>x</i><sub>4</sub> + 9<i>x</i><sub>5</sub> = 2,

   <i>x</i><sub>1</sub> – 9<i>x</i><sub>5</sub> + 8<i>x</i><sub>6</sub> = 2,

   <i>x</i><sub>1</sub> – 8&...

Найти решение системы

  <i>x</i><sup>4</sup> + <i>y</i><sup>4</sup> = 17,

  <i>x + y</i> = 3.

Решить систему уравнений с <i>n</i> неизвестными   <img align="absmiddle" src="/storage/problem-media/108979/problem_108979_img_2.gif">

Рассматривается выпуклый четырёхугольник <i>ABCD</i>. Пары его противоположных сторон продолжены до пересечения: <i>AB</i> и <i>CD</i> – в точке <i>P, CB</i> и <i>DA</i> – в точке <i>Q</i>. Пусть <i>l<sub>A</sub>, l<sub>B</sub>, l<sub>C</sub></i> и <i>l<sub>D</sub></i> – биссектрисы внешних углов четырёхугольника при вершинах соответственно <i>A, B, C, D</i>. Пусть <i>l<sub>P</sub></i> и <i>l<sub>Q</sub></i> – внешние биссектрисы углов соответственно <i>A<sub>PD</sub></i> и <i>A<sub>QB</sub></i> (то есть биссектрисы углов, дополняющих эти угл...

На базаре продаются рыбки, большие и маленькие. Сегодня три больших и одна маленькая стоят вместе столько же, сколько пять больших вчера. А две большие и одна маленькая сегодня стоят вместе столько же, сколько три больших и одна маленькая вчера. Можно ли по этим данным выяснить, что дороже: одна большая и две маленьких сегодня, или пять маленьких вчера?

Натуральное число <i>n</i> таково, что  3<i>n</i> + 1  и  10<i>n</i> + 1  являются квадратами натуральных чисел. Докажите, что число  29<i>n</i> + 11  – составное.

Решите уравнение  (<i>x</i> + 1)<sup>63</sup> + (<i>x</i> + 1)<sup>62</sup>(<i>x</i> – 1) + (<i>x</i> + 1)<sup>61</sup>(<i>x</i> – 1)² + ... + (<i>x</i> – 1)<sup>63</sup> = 0.

Купец продаёт двух коней с сёдлами, причём цена одного седла 120 рублей, а другого – 25 рублей. Первый конь с хорошим седлом втрое дороже другого с дешёвым, а другой конь с хорошим седлом вдвое дешевле первого коня с дешёвым. Какова цена каждого коня?

Карлсон написал дробь <sup>10</sup>/<sub>97</sub>. Малыш может:

  1) прибавлять любое натуральное число к числителю и знаменателю одновременно,

  2) умножать числитель и знаменатель на одно и то же натуральное число. Сможет ли Малыш с помощью этих действий получить дробь,

  а) равную ½?  б) равную 1?

Решите систему уравнений:

    <i>xy</i>(<i>x + y</i>) = 30

    <i>x</i>³ + <i>y</i>³ = 35.

Решите систему уравнений:

    <sup>1</sup>/<sub><i>x</i></sub> + <sup>1</sup>/<sub><i>y</i></sub> = 6,

    <sup>1</sup>/<sub><i>y</i></sub> + <sup>1</sup>/<sub><i>z</i></sub> = 4,

    <sup>1</sup>/<sub><i>z</i></sub> + <sup>1</sup>/<sub><i>x</i></sub> = 5.

Решить уравнение  [<i>x</i>³] + [<i>x</i>²] + [<i>x</i>] = {<i>x</i>} − 1.

<i>n</i> красных и <i>n</i> синих точек, строго чередуясь, разделили окружность на 2<i>n</i> дуг так, что каждые две смежные из них имеют различную длину. При этом длины каждой из этих дуг равны одному из трёх чисел: <i>a, b</i> или <i>c</i>. Докажите, что <i>n</i>-угольник с красными вершинами и <i>n</i>-угольник с синими вершинами имеют равные периметры и равные площади.

а) На доске выписано 100 различных чисел. Докажите, что среди них можно выбрать восемь чисел так, чтобы их среднее арифметическое не представлялось в виде среднего арифметического никаких девяти из выписанных на доске чисел. б) На доске выписано 100 <i>целых</i> чисел. Известно, что для любых восьми из этих чисел найдутся такие девять из этих чисел, что среднее арифметическое этих восьми чисел равно среднему арифметическому этих девяти чисел. Докажите, что все числа равны.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка