Олимпиадные задачи по теме «Алгебраические уравнения и системы уравнений» для 1-10 класса

Решите уравнение:  <img align="absmiddle" src="/storage/problem-media/116928/problem_116928_img_2.gif">.

На доске записан ряд из чисел и звёздочек: 5, *, *, *, *, *, *, 8. Замените звёздочки числами так, чтобы сумма каждых трёх чисел, стоящих подряд, равнялась 20.

Шесть кружков последовательно соединили отрезками. На каждом отрезке записали некоторое число, а в каждом кружке – сумму двух чисел, записанных на входящих в него отрезках. После этого стёрли все числа на отрезках и в одном из кружков (см. рис.). Можно ли найти число, стёртое в кружке?<div align="center"><img src="/storage/problem-media/116854/problem_116854_img_2.gif"></div>

Ненулевые числа <i>a</i>, <i>b</i>, <i>c</i> таковы, что каждые два из трёх уравнений  <i>ax</i><sup>11</sup> + <i>bx</i><sup>4</sup> + <i>c</i> = 0,  <i>bx</i><sup>11</sup> + <i>cx</i><sup>4</sup> + <i>a</i> = 0,  <i>cx</i><sup>11</sup> + <i>ax</i><sup>4</sup> + <i>b</i> = 0  имеют общий корень. Докажите, что все три уравнения имеют общий корень.

Про три положительных числа известно, что если выбрать одно из них и прибавить к нему сумму квадратов двух других, то получится одна и та же сумма, независимо от выбранного числа. Верно ли, что все числа равны?

Какие значения может принимать выражение  (<i>x – y</i>)(<i>y – z</i>)(<i>z – x</i>),  если известно, что  <img align="absmiddle" src="/storage/problem-media/116451/problem_116451_img_2.gif"> ?

Найдите все неотрицательные решения системы уравнений:

    <i>x</i>³ = 2<i>y</i>² – <i>z</i>,

    <i>y</i>³ = 2<i>z</i>² – <i>x</i>,

    <i>z</i>³ = 2<i>x</i>² – <i>y</i>.

Коля и Вася за ноябрь получили по 15 оценок: тройки, четвёрки и пятёрки. При этом Коля получил пятёрок столько же, сколько Вася четвёрок, четвёрок столько же, сколько Вася троек, а троек столько же, сколько Вася пятёрок. Оказалось, что средний балл за ноябрь у мальчиков одинаковый. Сколько троек получил Коля в ноябре?

Набор чисел<i>a</i><sub>0</sub>,<i>a</i><sub>1</sub>, ...,<i>a<sub>n</sub></i>удовлетворяет условиям:  <i>a</i><sub>0</sub>= 0,  0 ≤<i>a</i><sub><i>k</i>+1</sub>–<i>a<sub>k</sub></i>≤ 1  при  <i>k</i>= 0, 1, ...,<i>n</i>– 1.  Докажите неравенство  <img align="absmiddle" src="/storage/problem-media/110096/problem_110096_img_2.gif">

Набор чисел <i>a</i><sub>0</sub>, <i>a</i><sub>1</sub>, ..., <i>a<sub>n</sub></i> удовлетворяет условиям:  <i>a</i><sub>0</sub> = 0,  <i>a</i><sub><i>k</i>+1</sub> ≥ <i>a</i><sub><i>k</i></sub> + 1  при  <i>k</i> = 0, 1, ..., <i>n</i> – 1.  Докажите неравенство   <img align="absmiddle" src="/storage/problem-media/110087/problem_110087_img_2.gif">

Пусть <i>a, b, c, d, e</i> и <i>f</i> – некоторые числа, причём  <i>ace</i> ≠ 0.  Известно, что значения выражений  |<i>ax + b</i>| + |<i>cx + d</i>|  и  |<i>ex + f</i> |  равны при всех значениях <i>x</i>.

Докажите, что  <i>ad = bc</i>.

Участникам тестовой олимпиады было предложено <i>n</i> вопросов. Жюри определяет сложность каждого из вопросов: целое положительное количество баллов, получаемых участниками за правильный ответ на вопрос. За неправильный ответ начисляется 0 баллов, все набранные участником баллы суммируются. Когда все участники сдали листки со своими ответами, оказалось, что жюри так может определить сложность вопросов, чтобы места между участниками распределились любым наперед заданным образом. При каком наибольшем числе участников это могло быть?

Существуют ли 1998 различных натуральных чисел, произведение каждых двух из которых делится нацело на квадрат их разности?

Известно, что уравнение  <i>ax</i><sup>5</sup> + <i>bx</i><sup>4</sup> + <i>c</i> = 0  имеет три различных корня. Докажите, что уравнение  <i>cx</i><sup>5</sup> + <i>bx + a</i> = 0  также имеет три различных корня.

Уравнение  <i>x</i>² + <i>ax + b</i> = 0  имеет два различных действительных корня.

Докажите, что уравнение  <i>x</i><sup>4</sup> + <i>ax</i>³ + (<i>b</i> – 2)<i>x</i>² – <i>ax</i> + 1 = 0  имеет четыре различных действительных корня.

Решите в положительных числах систему уравнений     <img src="/storage/problem-media/109538/problem_109538_img_2.gif">

Значение <i>a</i> подобрано так, что число корней первого из уравнений  4<sup><i>x</i></sup> – 4<sup>–<i>x</i></sup> = 2 cos <i>ax</i>,  4<sup><i>x</i></sup> + 4<sup>–<i>x</i></sup> = 2 cos <i>ax</i> + 4  равно 2007.

Сколько корней при том же <i>a</i> имеет второе уравнение?

Решите уравнение:  (<i>x</i>³ – 2)(2<sup>sin <i>x</i></sup> – 1) + (2<sup><i>x</i>³</sup> – 4) sin <i>x</i> = 0.

Решить уравнение  (<i>x</i>² – <i>x</i> + 1)<sup>4</sup> – 10<i>x</i>²(<i>x</i>² – <i>x</i> + 1)² + 9<i>x</i><sup>4</sup> = 0.

Решить систему уравнений     1 − <i>x</i><sub>1</sub><i>x</i><sub>2</sub><i>x</i><sub>3</sub> = 0,

    1 + <i>x</i><sub>2</sub><i>x</i><sub>3</sub><i>x</i><sub>4</sub> = 0,

    1 − <i>x</i><sub>3</sub><i>x</i><sub>4</sub><i>x</i><sub>5</sub> = 0,

    1 + <i>x</i><sub>4</sub><i>x</i><sub>5</sub><i>x</i><sub>6</sub> = 0,

      ...

    1 − <i>x</i><sub>47</sub><i>x</i><sub>48</sub><i>x</i><sub>49</sub> = 0,

    1 + <i&...

Найти все действительные решения системы уравнений

    <i>x</i>² + <i>y</i>² + <i>z</i>² = 1,

    <i>x</i>³ + <i>y</i>³ + <i>z</i>³ = 1.

Решить систему уравнений:

   <i>x</i><sub>1</sub> + 12<i>x</i><sub>2</sub> = 15,

   <i>x</i><sub>1</sub> – 12<i>x</i><sub>2</sub> + 11<i>x</i><sub>3</sub> = 2,

   <i>x</i><sub>1</sub> – 11<i>x</i><sub>3</sub> + 10<i>x</i><sub>4</sub> = 2,

   <i>x</i><sub>1</sub> – 10<i>x</i><sub>4</sub> + 9<i>x</i><sub>5</sub> = 2,

   <i>x</i><sub>1</sub> – 9<i>x</i><sub>5</sub> + 8<i>x</i><sub>6</sub> = 2,

   <i>x</i><sub>1</sub> – 8&...

Найти решение системы

  <i>x</i><sup>4</sup> + <i>y</i><sup>4</sup> = 17,

  <i>x + y</i> = 3.

Решить систему уравнений     <img align="middle" src="/storage/problem-media/108989/problem_108989_img_2.gif">

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка