Олимпиадные задачи по математике для 11 класса - сложность 1-5 с решениями

Точка <i>E</i> – середина отрезка, соединяющего ортоцентр неравнобедренного остроугольного треугольника <i>ABC</i> с его вершиной <i>A</i>. Вписанная окружность этого треугольника касается сторон <i>AB</i> и <i>AC</i> в точках <i>C'</i> и <i>B'</i> соответственно. Докажите, что точка <i>F</i>, симметричная точке <i>E</i> относительно прямой <i>B'C'</i>, лежит на прямой, проходящей через центры вписанной и описанной окружностей треугольника <i>ABC</i>.

Окружность ω, вписанная в остроугольный неравнобедренный треугольник <i>ABC</i>, касается стороны <i>BC</i> в точке <i>D</i>. Пусть точка <i>I</i> – центр окружности ω, а <i>O</i> – центр описанной окружности треугольника <i>ABC</i>. Описанная окружность треугольника <i>AID</i>, пересекает вторично прямую <i>AO</i> в точке <i>E</i>. Докажите, что длина отрезка <i>AE</i> равна радиусу окружности ω.

Какие треугольники можно разрезать на три треугольника с равными радиусами описанных окружностей?

Разрежьте крест, составленный из пяти одинаковых квадратов, на три многоугольника, равных по площади и периметру.

На сторонах<i> AB </i>и<i> BC </i>параллелограмма<i> ABCD </i>выбраны точки<i> A<sub>1</sub> </i>и<i> C<sub>1</sub> </i>соответственно. Отрезки<i> AC<sub>1</sub> </i>и<i> CA<sub>1</sub> </i>пересекаются в точке<i> P </i>. Описанные окружности треугольников <i> AA<sub>1</sub>P </i>и<i> CC<sub>1</sub>P </i>вторично пересекаются в точке<i> Q </i>, лежащей внутри треугольника <i> ACD </i>. Докажите, что<i> <img align="absmiddle" src="/storage/problem-media/115402/problem_115402_img_2.gif"> PDA=<img align="absmiddle" src="/storage/...

Точка<i> D </i>на стороне<i> BC </i>треугольника<i> ABC </i>такова, что радиусы вписанных окружностей треугольников<i> ABD </i>и<i> ACD </i>равны. Докажите, что радиусы окружностей, вневписанных в треугольники<i> ABD </i>и<i> ACD </i>, касающихся соответственно отрезков<i> BD </i>и<i> CD </i>, также равны.

<i>AA</i><sub>1</sub> и <i>BB</i><sub>1</sub> – высоты остроугольного неравнобедренного треугольника <i>ABC</i>. Известно, что отрезок <i>A</i><sub>1</sub><i>B</i><sub>1</sub> пересекает среднюю линию, параллельную <i>AB</i>, в точке <i>C'</i>. Докажите, что отрезок <i>CC'</i> перпендикулярен прямой, проходящей через точку пересечения высот и центр описанной окружности треугольника <i>ABC</i>.

Двое игроков по очереди расставляют в каждой из 24 клеток поверхности куба 2×2×2 числа 1, 2, 3, 24 (каждое число можно ставить один раз). Второй игрок хочет, чтобы суммы чисел в клетках каждого кольца из 8 клеток, опоясывающего куб, были одинаковыми. Сможет ли первый игрок ему помешать?

Каждую вершину выпуклого четырехугольника площади<i> S </i>отразили симметрично относительно диагонали, не содержащей эту вершину. Обозначим площадь получившегося четырехугольника через<i> S' </i>. Докажите, что<i> <img src="/storage/problem-media/110176/problem_110176_img_2.gif"><</i>3.

Окружности<i> σ <sub>1</sub> </i>и<i> σ <sub>2</sub> </i>пересекаются в точках<i> A </i>и<i> B </i>. В точке<i> A </i>к<i> σ <sub>1</sub> </i>и<i> σ <sub>2</sub> </i>проведены соответственно касательные<i> l<sub>1</sub> </i>и<i> l<sub>2</sub> </i>. Точки<i> T<sub>1</sub> </i>и<i> T<sub>2</sub> </i>выбраны соответственно на окружностях<i> σ <sub>1</sub> </i>и<i> σ <sub>2</sub> </i>так, что угловые меры дуг<i> T<sub>1</sub>A </i>и<i> AT<sub>2</sub> </i>равны (величина дуги...

Для каких<i> α </i>существует функция<i> f </i>:<i> <img src="/storage/problem-media/109912/problem_109912_img_2.gif"><img src="/storage/problem-media/109912/problem_109912_img_3.gif"><img src="/storage/problem-media/109912/problem_109912_img_2.gif"> </i>, отличная от константы, такая, что <center><i>

f</i>(<i>α</i>(<i>x+y</i>))<i>=f</i>(<i>x</i>)<i>+f</i>(<i>y</i>)<i>;? </i></center>

Биссектрисы <i>BB</i><sub>1</sub> и <i>CC</i><sub>1</sub> треугольника <i>ABC</i> пересекаются в точке <i>I</i>. Прямая <i>B</i><sub>1</sub><i>C</i><sub>1</sub> пересекает описанную окружность треугольника <i>ABC</i> в точках <i>M</i> и <i>N</i>.

Докажите, что радиус описанной окружности треугольника <i>MIN</i> вдвое больше радиуса описанной окружности треугольника <i>ABC</i>.

Четырёхугольник <i>ABCD</i> является одновременно и вписанным, и описанным, причём вписанная в <i>ABCD</i> окружность касается его сторон <i>AB, BC, CD</i> и <i>AD</i> в точках <i>K, L, M, N</i> соответственно. Биссектрисы внешних углов <i>A</i> и <i>B</i> четырёхугольника пересекаются в точке <i>K'</i>, внешних углов <i>B</i> и <i>C</i> – в точке <i>L'</i>, внешних углов <i>C</i> и <i>D</i> – в точке <i>M'</i>, внешних углов <i>D</i> и <i>A</i> – в точке <i>N'</i>. Докажите, что прямые <i>KK', LL', MM'</i> и <i>NN'</i> проход...

Пусть <i>I<sub>A</sub></i> и <i>I<sub>B</sub></i> – центры вневписанных окружностей, касающихся сторон <i>BC</i> и <i>CA</i> треугольника <i>ABC</i> соответственно, а <i>P</i> – точка на описанной окружности Ω этого треугольника. Докажите, что середина отрезка, соединяющего центры описанных окружностей треугольников <i>I<sub>A</sub>CP</i> и <i>I<sub>B</sub>CP</i>, совпадает с центром окружности Ω.

На сторонах <i>AP</i> и <i>PD</i> остроугольного треугольника <i>APD</i> выбраны соответственно точки <i>B</i> и <i>C</i>. Диагонали четырёхугольника <i>ABCD</i> пересекаются в точке <i>Q</i>. Точки <i>H</i><sub>1</sub> и <i>H</i><sub>2</sub> являются ортоцентрами треугольников <i>APD</i> и <i>BPC</i> соответственно. Докажите, что если прямая <i>H</i><sub>1</sub><i>H</i><sub>2</sub> проходит через точку <i>X</i> пересечения описанных окружностей треугольников <i>ABQ</i> и <i>CDQ</i>, то она проходит и через точку <i>Y</i> пересечения описанны...

Сфера с центром в плоскости основания<i> ABC </i>тетраэдра<i> SABC </i>проходит через вершины<i> A </i>,<i> B </i>и<i> C </i>и вторично пересекает ребра<i> SA </i>,<i> SB </i>и<i> SC </i>в точках<i> A</i>1,<i> B</i>1и<i> C</i>1соответственно. Плоскости, касающиеся сферы в точках<i> A</i>1,<i> B</i>1и<i> C</i>1, пересекаются в точке<i> O </i>. Докажите, что<i> O </i>– центр сферы, описанной около тетраэдра<i> SA</i>1<i>B</i>1<i>C</i>1.

Дан выпуклый четырёхугольник<i> ABCD </i>, и проведены биссектрисы<i> l<sub>A</sub> </i>,<i> l<sub>B</sub> </i>,<i> l<sub>C</sub> </i>,<i> l<sub>D</sub> </i>внешних углов этого четырёхугольника. Прямые<i> l<sub>A</sub> </i>и<i> l<sub>B</sub> </i>пересекаются в точке<i> K </i>, прямые<i> l<sub>B</sub> </i>и<i> l<sub>C</sub> </i>– в точке<i> L </i>, прямые<i> l<sub>C</sub> </i>и<i> l<sub>D</sub> </i>– в точке<i> M </i>, прямые<i> l<sub>D</sub> </i>и<i> l<sub>A</sub> &...

Пусть точка<i> A' </i>лежит на одной из сторон трапеции<i> ABCD </i>, причём прямая<i> AA' </i>делит площадь трапеции пополам. Точки<i> B' </i>,<i> C' </i>и<i> D' </i>определяются аналогично. Докажите, что точка пересечения диагоналей четырёхугольников<i> ABCD </i>и<i> A'B'C'D' </i>симметричны относительно середины средней линии трапеции<i> ABCD </i>.

Даны две окружности, касающиеся внутренним образом в точке<i> N </i>. Хорды<i> BA </i>и<i> BC </i>внешней окружности касаются внутренней в точках<i> K </i>и<i> M </i>соответственно. Пусть<i> Q </i>и<i> P </i>– середины дуг<i> AB </i>и<i> BC </i>, не содержащих точку<i> N </i>. Окружности, описанные около треугольников<i> BQK </i>и<i> BPM </i>, пересекаются в точке<i> B</i>1. Докажите, что<i> BPB</i>1<i>Q </i>– параллелограмм.

Пусть <i>A'</i> – точка касания вневписанной окружности треугольника <i>ABC</i> со стороной <i>BC</i>. Прямая <i>a</i> проходит через точку <i>A'</i> и параллельна биссектрисе внутреннего угла <i>A</i>. Аналогично строятся прямые <i>b</i> и <i>c</i>. Докажите, что прямые <i>a, b</i> и <i>c</i> пересекаются в одной точке.

Существует ли правильная треугольная призма, которую можно оклеить (без наложений) различными равносторонними треугольниками? (Разрешается перегибать треугольники через рёбра призмы.)

Докажите неравенство   <img align="absmiddle" src="/storage/problem-media/98473/problem_98473_img_2.gif">   при любых натуральных <i>n</i> и <i>k</i>.

Вневписанные окружности касаются сторон <i>AC</i> и <i>BC</i> треугольника <i>ABC</i> в точках <i>K</i> и <i>L</i>. Докажите, что прямая, соединяющая середины <i>KL</i> и <i>AB</i>,

  а) делит периметр треугольника <i>ABC</i> пополам;

  б) параллельна биссектрисе угла <i>ACB</i>.

В остроугольном треугольнике $ABC$ $H$ – ортоцентр; $A_1$, $B_1$, $C_1$ – точки касания вписанной окружности с $BC$, $CA$, $AB$ соответственно; $E_A$, $E_B$, $E_C$ – середины $AH$, $BH$, $CH$ соответственно; окружность с центром $E_A$, проходящая через $A$, повторно пересекает биссектрису угла $A$ в точке $A_2$; точки $B_2$, $C_2$ определены аналогично. Докажите, что треугольники $A_1B_1C_1$ и $A_2B_2C_2$ подобны.

В остроугольном треугольнике $ABC$ $CM$ – медиана, $P$ – проекция ортоцентра $H$ на биссектрису угла $C$. Докажите, что $MP$ делит отрезок $CH$ пополам.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка