Олимпиадная задача по стереометрии и алгоритмам для 9–11 класса от Емельянова
Задача
Двое игроков по очереди расставляют в каждой из 24 клеток поверхности куба 2×2×2 числа 1, 2, 3, 24 (каждое число можно ставить один раз). Второй игрок хочет, чтобы суммы чисел в клетках каждого кольца из 8 клеток, опоясывающего куб, были одинаковыми. Сможет ли первый игрок ему помешать?
Решение
Опишем стратегию второго.
Заметим, что по каждой клетке проходят ровно два кольца, пересекающиеся, кроме нее, еще по одной клетке на противоположной грани. Назовем такие клетки соответствующими. Разобьем числа на пары с суммой 25:(1, 24),(2, 23),(12,13).
Если первый игрок своим очередным ходом ставит в клетку некоторое число, то пусть второй игрок ставит в ответ парное число в соответствующую клетку. При такой стратегии второго по окончании игры в каждом кольце окажутся по два числа из четырех пар, поэтому их сумма равна4· 25 = 100.
Ответ
Не сможет.
Чтобы оставлять комментарии, войдите или зарегистрируйтесь