Олимпиадные задачи по математике
Натуральные числа от 1 до 100 расставлены по кругу в таком порядке, что каждое число либо больше обоих соседей, либо меньше обоих соседей. Пара соседних чисел называется <i>хорошей</i>, если при выкидывании этой пары вышеописанное свойство сохраняется. Какое минимальное количество хороших пар может быть?
В стране 1001 город, каждые два города соединены дорогой с односторонним движением. Из каждого города выходит ровно 500 дорог, в каждый город входит ровно 500 дорог. От страны отделилась независимая республика, в которую вошли 668 городов. Докажите, что из каждого города этой республики можно доехать до любого другого ее города, не выезжая за пределы республики.
Четырёхугольник <i>ABCD</i> является одновременно и вписанным, и описанным, причём вписанная в <i>ABCD</i> окружность касается его сторон <i>AB, BC, CD</i> и <i>AD</i> в точках <i>K, L, M, N</i> соответственно. Биссектрисы внешних углов <i>A</i> и <i>B</i> четырёхугольника пересекаются в точке <i>K'</i>, внешних углов <i>B</i> и <i>C</i> – в точке <i>L'</i>, внешних углов <i>C</i> и <i>D</i> – в точке <i>M'</i>, внешних углов <i>D</i> и <i>A</i> – в точке <i>N'</i>. Докажите, что прямые <i>KK', LL', MM'</i> и <i>NN'</i> проход...