Олимпиадные задачи из источника «Всероссийская олимпиада по математике» для 11 класса

Для натурального <i>n</i> обозначим  <i>S<sub>n</sub></i> = 1! + 2! + ... + <i>n</i>!.  Докажите, что при некотором <i>n</i> у числа <i>S<sub>n</sub></i> есть простой делитель, больший 10<sup>2012</sup>.

На окружности отмечено 2<i>n</i> + 1  точек, делящих её на равные дуги  (<i>n</i> ≥ 2).  Двое по очереди стирают по одной точке. Если после хода игрока все треугольники с вершинами в ещё отмеченных точках – тупоугольные, он выигрывает, и игра заканчивается. Кто выиграет при правильной игре: начинающий игру или его противник?

Точки <i>A</i><sub>1</sub>, <i>B</i><sub>1</sub>, <i>C</i><sub>1</sub> выбраны на сторонах <i>BC, CA</i> и <i>AB</i> треугольника <i>ABC</i> соответственно. Оказалось, что  <i>AB</i><sub>1</sub> – <i>AC</i><sub>1</sub> = <i>CA</i><sub>1</sub> – <i>CB</i><sub>1</sub> = <i>BC</i><sub>1</sub> – <i>BA</i><sub>1</sub>.  Пусть <i>O<sub>A</sub></i>, <i>O<sub>B</sub></i> и <i>O<sub>C</sub></i> – центры описанных окружностей треугольников <i>AB</i><sub>1</sub&...

Даны многочлен <i>P</i>(<i>x</i>) и такие числа  <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, <i>a</i><sub>3</sub>, <i>b</i><sub>1</sub>, <i>b</i><sub>2</sub>, <i>b</i><sub>3</sub>,  что  <i>a</i><sub>1</sub><i>a</i><sub>2</sub><i>a</i><sub>3</sub> ≠ 0.  Оказалось, что  <i>P</i>(<i>a</i><sub>1</sub><i>x + b</i><sub>1</sub>) + <i>P</i>(<i>a</i><sub>2</sub><i>x + b</i><sub>2</sub>) = <i>P</i>(<i>a</i><sub>3&lt...

Дана пирамида <i>SA</i><sub>1</sub><i>A</i><sub>2</sub>...<i>A<sub>n</sub></i>, основание которой – выпуклый многоугольник <i>A</i><sub>1</sub><i>A</i><sub>2</sub>...<i>A<sub>n</sub></i>. Для каждого  <i>i</i> = 1, 2, ..., <i>n</i>  в плоскости основания построили треугольник <i>X<sub>i</sub>A<sub>i</sub>A</i><sub><i>i</i>+1</sub>, равный треугольнику <i>SA<sub>i</sub>A</i><sub><i>i</i>+1</sub> и лежащий по ту же сторону от прямой <i>A<sub>i</sub>A</i><sub><i>i</i>+1</sub&gt...

Клетчатая плоскость раскрашена в шахматном порядке в чёрный и белый цвета. Затем белые клетки снова раскрашены в красный и синий цвета так, чтобы клетки, соседние по углу, были разноцветными. Пусть <i>l</i> – прямая, не параллельная сторонам клеток. Для каждого отрезка <i>I</i>, параллельного <i>l</i>, посчитаем разность сумм длин его красных и синих участков. Докажите, что существует число <i>C</i> (зависящее только от прямой <i>l</i>) такое, что все полученные разности не превосходят <i>C</i>.

Изначально на столе лежат 111 кусков пластилина одинаковой массы. За одну операцию можно выбрать несколько групп (возможно, одну) по одинаковому количеству кусков и в каждой группе весь пластилин слепить в один кусок. За какое наименьшее количество операций можно получить ровно 11 кусков, каждые два из которых имеют различные массы?

Точка <i>E</i> – середина отрезка, соединяющего ортоцентр неравнобедренного остроугольного треугольника <i>ABC</i> с его вершиной <i>A</i>. Вписанная окружность этого треугольника касается сторон <i>AB</i> и <i>AC</i> в точках <i>C'</i> и <i>B'</i> соответственно. Докажите, что точка <i>F</i>, симметричная точке <i>E</i> относительно прямой <i>B'C'</i>, лежит на прямой, проходящей через центры вписанной и описанной окружностей треугольника <i>ABC</i>.

На координатной плоскости нарисовано <i>n</i> парабол, являющихся графиками квадратных трёхчленов; никакие две из них не касаются. Они делят плоскость на несколько областей, одна из которых расположена над всеми параболами. Докажите, что у границы этой области не более  2(<i>n</i> – 1)  углов (то есть точек пересечения пары парабол).

Существуют ли такие натуральные числа <i>a, b, c</i>, большие 10<sup>10</sup>, что их произведение делится на любое из них, увеличенное на 2012?

Изначально на доске были написаны одночленs  1, <i>x, x</i>², ..., <i>x<sup>n</sup></i>.  Договорившись заранее, <i>k</i> мальчиков каждую минуту одновременно вычисляли каждый сумму каких-то двух многочленов, написанных на доске, и результат дописывали на доску. Через <i>m</i> минут на доске были написаны, среди прочих, многочлены  <i>S</i><sub>1</sub> = 1 + <i>x,  S</i><sub>2</sub> = 1 + <i>x + x</i>²,  <i>S</i><sub>3</sub> = 1 + <i>x + x</i>² + <i>x</i><sup>3</sup>,  ...,  <i>S<sub>n</sub></i> = 1 + <i>x + x</i>² + ... + <i>x<sup>n</sup></i>.  Докажите...

Каждые два из действительных чисел <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, <i>a</i><sub>3</sub>, <i>a</i><sub>4</sub>, <i>a</i><sub>5</sub> отличаются не менее чем на 1. Оказалось, что для некоторого действительного <i>k</i> выполнены равенства   <img align="absmiddle" src="/storage/problem-media/116765/problem_116765_img_2.gif">   Докажите, что  <i>k</i>² ≥ <sup>25</sup>/<sub>3</sub>.

Окружность ω, вписанная в остроугольный неравнобедренный треугольник <i>ABC</i>, касается стороны <i>BC</i> в точке <i>D</i>. Пусть точка <i>I</i> – центр окружности ω, а <i>O</i> – центр описанной окружности треугольника <i>ABC</i>. Описанная окружность треугольника <i>AID</i>, пересекает вторично прямую <i>AO</i> в точке <i>E</i>. Докажите, что длина отрезка <i>AE</i> равна радиусу окружности ω.

Пусть  <i>a</i><sub>1</sub>, ..., <i>a</i><sub>10</sub>  – различные натуральные числа, не меньшие 3, сумма которых равна 678. Может ли сумма остатков от деления некоторого натурального числа <i>n</i> на 20 чисел  <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, ..., <i>a</i><sub>10</sub>, 2<i>a</i><sub>1</sub>, 2<i>a</i><sub>2</sub>,..., 2<i>a</i><sub>10</sub>  равняться 2012?

Дан неравнобедренный треугольник <i>ABC</i>. Пусть <i>N</i> – середина дуги <i>BAC</i> его описанной окружности, а <i>M</i> – середина стороны <i>BC</i>. Обозначим через <i>I</i><sub>1</sub> и <i>I</i><sub>2</sub> центры вписанных окружностей треугольников <i>ABM</i> и <i>ACM</i> соответственно. Докажите, что точки <i>I</i><sub>1</sub>, <i>I</i><sub>2</sub>, <i>A</i>, <i>N</i> лежат на одной окружности.

Для натурального <i>a</i> обозначим через <i>P</i>(<i>a</i>) наибольший простой делитель числа  <i>a</i>² + 1.

Докажите, что существует бесконечно много таких троек различных натуральных чисел <i>a, b, c</i>, что  <i>P</i>(<i>a</i>) = <i>P</i>(<i>b</i>) = <i>P</i>(<i>c</i>).

Даны два различных приведённых кубических многочлена <i>F</i>(<i>x</i>) и <i>G</i>(<i>x</i>). Выписали все корни уравнений  <i>F</i>(<i>x</i>) = 0,  <i>G</i>(<i>x</i>) = 0,  <i>F</i>(<i>x</i>) = <i>G</i>(<i>x</i>). Оказалось, что выписаны восемь различных чисел. Докажите, что наибольшее и наименьшее из них не могут одновременно являться корнями многочлена <i>F</i>(<i>x</i>).

По шоссе в одном направлении едут 10 автомобилей. Шоссе проходит через несколько населённых пунктов. Каждый из автомобилей едет с некоторой постоянной скоростью в населённых пунктах и с некоторой другой постоянной скоростью вне населённых пунктов. Для разных автомобилей эти скорости могут отличаться. Вдоль шоссе расположено 2011 флажков. Известно, что каждый автомобиль проехал мимо каждого флажка, причём около флажков обгонов не происходило. Докажите, что мимо каких-то двух флажков автомобили проехали в одном и том же порядке.

В Академии Наук 999 академиков. Каждая научная тема интересует ровно троих академиков, и у каждых двух академиков есть ровно одна тема, интересная им обоим. Докажите, что можно выбрать 250 тем из их общей области научных интересов так, чтобы каждый академик интересовался не более чем одной из них.

На стороне <i>BC</i> параллелограмма <i>ABCD</i>  (∠<i>A</i> < 90°)  отмечена точка <i>T</i> так, что треугольник <i>ATD</i> – остроугольный. Пусть <i>O</i><sub>1</sub>, <i>O</i><sub>2</sub> и <i>O</i><sub>3</sub> – центры описанных окружностей треугольников <i>ABT</i>, <i>DAT</i> и <i>CDT</i> соответственно (см. рисунок). <div align="center"><img src="/storage/problem-media/116647/problem_116647_img_2.gif"></div>Докажите, что ортоцентр треугольника<i>O</i><sub>1</sub><i>O</i><sub>2</sub><i>O</i><sub>3</sub>лежит...

Натуральные числа <i>d</i> и  <i>d' > d</i>  – делители натурального числа <i>n</i>. Докажите, что  <i>d' > d</i> + <sup><i>d</i>²</sup>/<sub><i>n</i></sub>.

Даны положительные числа <i>b</i> и <i>c</i>. Докажите неравенство  (<i>b</i> – <i>c</i>)<sup>2011</sup>(<i>b</i> + <i>c</i>)<sup>2011</sup>(<i>c</i> – <i>b</i>)<sup>2011</sup> ≥ (<i>b</i><sup>2011</sup> – <i>c</i><sup>2011</sup>)(<i>b</i><sup>2011</sup> + <i>c</i><sup>2011</sup>)(<i>c</i><sup>2011</sup> – <i>b</i><sup>2011</sup>).

Вася нарисовал на плоскости несколько окружностей и провёл всевозможные общие касательные к каждой паре этих окружностей. Оказалось, что проведённые прямые содержат все стороны некоторого правильного 2011-угольника. Какое наименьшее количество окружностей мог нарисовать Вася?

Остроугольный треугольник <i>ABC</i> вписан в окружность ω. Касательные к ω, проведённые через точки <i>B</i> и <i>C</i>, пересекают касательную к ω, проведённую через точку <i>A</i>, в точках <i>K</i> и <i>L</i> соответственно. Прямая, проведённая через <i>K</i> параллельно <i>AB</i>, пересекается с прямой, проведённой через <i>L</i> параллельно <i>AC</i>, в точке <i>P</i>. Докажите, что  <i>BP = CP</i>.

2011 складов соединены дорогами так, что от каждого склада можно проехать к любому другому, возможно, проехав по нескольким дорогам. На складах находится по  <i>x</i><sub>1</sub>, ..., <i>x</i><sub>2011</sub>  кг цемента соответственно. За один рейс можно провезти с произвольного склада на другой по соединяющей их дороге произвольное количество цемента. В итоге на складах по плану должно оказаться по  <i>y</i><sub>1</sub>, ..., <i>y</i><sub>2011</sub>  кг цемента соответственно, причём

<i>x</i><sub>1</sub> + <i>x</i><sub>2</sub> + ... + <i>x</i><sub>2011</sub> = <i>y</i><sub>1</sub> + <i>y<...

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка