Олимпиадные задачи из источника «1994-1995»
1994-1995
НазадМожно ли в таблице 11×11 расставить натуральные числа от 1 до 121 так, чтобы числа, отличающиеся друг от друга на единицу, располагались в клетках с общей стороной, а все точные квадраты попали в один столбец?
Правильный шестиугольник со стороной 5 разбит прямыми, параллельными его сторонам, на правильные треугольники со стороной 1 (см. рис.). <div align="center"> <img src="/storage/problem-media/109877/problem_109877_img_2.gif"> </div>Назовём узлами вершины всех таких треугольников. Известно, что более половины узлов отмечено. Докажите, что найдутся пять отмеченных узлов, лежащих на одной окружности.
Найдите все такие простые числа <i>p</i>, что число <i>p</i>² + 11 имеет ровно шесть различных делителей (включая единицу и само число).
Все стороны и диагонали правильного 12-угольника раскрашиваются в 12 цветов (каждый отрезок – одним цветом).
Существует ли такая раскраска, что для любых трёх цветов найдутся три вершины, попарно соединенные между собой отрезками этих цветов?
Можно ли расставить по кругу 1995 различных натуральных чисел так, чтобы для каждых двух соседних чисел отношение большего из них к меньшему было простым числом?
Докажите, что для любых положительных чисел <i>x</i> и <i>y</i> справедливо неравенство <img align="absmiddle" src="/storage/problem-media/109871/problem_109871_img_2.gif">
Улицы города Дужинска – простые ломаные, не пересекающиеся между собой во внутренних точках. Каждая улица соединяет два перекрёстка и покрашена в один из трёх цветов: белый, красный или синий. На каждом перекрёстке сходятся ровно три улицы, по одной каждого цвета. Перекрёсток называется <i>положительным</i>, если при его обходе против часовой стрелки цвета улиц идут в следующем порядке: белый, синий, красный, и <i>отрицательным</i> в противном случае. Докажите, что разность между числом положительных и числом отрицательных перекрёстков кратна 4.
<i>N</i>³ единичных кубиков просверлены по диагонали и плотно нанизаны на нить, после чего нить связана в кольцо (то есть вершина первого кубика соединена с вершиной последнего). При каких <i>N</i> такое ожерелье из кубиков можно упаковать в кубическую коробку с ребром длины <i>N</i>?
Рассматриваются такие квадратичные функции <i>f</i>(<i>x</i>) = <i>ax</i>² + <i>bx + c</i>, что <i>a < b</i> и <i>f</i>(<i>x</i>) ≥ 0 для всех <i>x</i>.
Какое наименьшее значение может принимать выражение <sup><i>a+b+c</i></sup>/<sub><i>b–a</i></sub> ?
На прямоугольном столе разложено несколько одинаковых квадратных листов бумаги так, что их стороны параллельны краям стола (листы могут перекрываться). Докажите, что можно воткнуть несколько булавок таким образом, что каждый лист будет прикреплен к столу ровно одной булавкой.
Натуральные числа <i>m</i> и <i>n</i> таковы, что НОК(<i>m, n</i>) + НОД(<i>m, n</i>) = <i>m + n</i>. Докажите, что одно из чисел <i>m</i> или <i>n</i> делится на другое.
Дана функция<i> f</i>(<i>x</i>)<i>=<img src="/storage/problem-media/109863/problem_109863_img_2.gif"> </i>. Найдите<i>f</i>(<i>.. f</i>(<i>f</i>(19))<i>..</i>)<i></i>95<i> раз</i>.
Числовая последовательность<i> a<sub>0</sub> </i>,<i> a<sub>1</sub> </i>,<i> a<sub>2</sub> </i>, такова, что при всех неотрицательных<i> m </i>и<i> n </i>(<i> m<img src="/storage/problem-media/109861/problem_109861_img_2.gif"> n </i>) выполняется соотношение <center><i>
a<sub>m+n</sub>+a<sub>m-n</sub>=<img src="/storage/problem-media/109861/problem_109861_img_3.gif"></i>(<i>a</i>2<i>m+a</i>2<i>n</i>)<i>.
</i></center> Найдите<i> a</i>1995, если<i> a<sub>1</sub>=</i>1.
Для углов<i> α </i>,<i> β </i>,<i> γ </i>справедливо равенство<i> sinα + sinβ + sinγ <img src="/storage/problem-media/109860/problem_109860_img_2.gif"></i>2. Докажите, что<i> cosα + cosβ + cosγ <img src="/storage/problem-media/109860/problem_109860_img_3.gif"><img src="/storage/problem-media/109860/problem_109860_img_4.gif"> </i>.
На плоскости рассматривается конечное множество равных, параллельно расположенных квадратов, причем среди любых<i> k+</i>1квадратов найдутся два пересекающихся. Докажите, что это множество можно разбить не более чем на2<i>k-</i>1непустых подмножеств так, что в каждом подмножестве все квадраты будут иметь общую точку.
В прямоугольном параллелепипеде одно из сечений является правильным шестиугольником. Докажите, что этот параллелепипед – куб.
В клетках таблицы 2000×2000 записаны числа 1 и –1. Известно, что сумма всех чисел в таблице неотрицательна. Докажите, что найдутся 1000 строк и 1000 столбцов таблицы, для которых сумма чисел, записанных в клетках, находящихся на их пересечении, не меньше 1000.
Имеется три кучи камней. Сизиф таскает по одному камню из кучи в кучу. За каждое перетаскивание он получает от Зевса количество монет, равное разности числа камней в куче, в которую он кладёт камень, и числа камней в куче, из которой он берёт камень (сам перетаскиваемый камень при этом не учитывается). Если указанная разность отрицательна, то Сизиф возвращает Зевсу соответствующую сумму. (Если Сизиф не может расплатиться, то великодушный Зевс позволяет ему совершать перетаскивание в долг.) В некоторый момент оказалось, что все камни лежат в тех же кучах, в которых лежали первоначально. Каков наибольший суммарный заработок Сизифа на этот момент?
Назовём натуральные числа <i>похожими</i>, если они записываются с помощью одного и того же набора цифр (например, для набора цифр 1, 1, 2 похожими будут числа 112, 121, 211). Докажите, что существуют такие три похожих 1995-значных числа, в записи которых нет нулей, что сумма двух из них равна третьему.
Можно ли в клетки таблицы 9×9 записать натуральные числа от 1 до 81 так, чтобы сумма чисел в каждом квадрате 3×3 была одна и та же?
Известно, что <i>f</i>(<i>x</i>), <i>g</i>(<i>x</i>) и <i>h</i>(<i>x</i>) – квадратные трёхчлены. Может ли уравнение <i>f</i>(<i>g</i>(<i>h</i>(<i>x</i>))) = 0 иметь корни 1, 2, 3, 4, 5, 6, 7 и 8?
Хорда <i>CD</i> окружности с центром <i>O</i> перпендикулярна ее диаметру <i>AB</i>, а хорда <i>AE</i> делит пополам радиус <i>OC</i>.
Докажите, что хорда <i>DE</i> делит пополам хорду <i>BC</i>.
Товарный поезд, отправившись из Москвы в <i>x</i> часов <i>y</i> минут, прибыл в Саратов в <i>y</i> часов <i>z</i> минут. Время в пути составило <i>z</i> часов <i>x</i> минут.
Найдите все возможные значения <i>x</i>.
Даны непостоянные многочлены <i>P</i>(<i>x</i>) и <i>Q</i>(<i>x</i>), у которых старшие коэффициенты равны 1.
Докажите, что сумма квадратов коэффициентов многочлена <i>P</i>(<i>x</i>)<i>Q</i>(<i>x</i>) не меньше суммы квадратов свободных членов <i>P</i>(<i>x</i>) и <i>Q</i>(<i>x</i>).
Последовательность натуральных чисел <i>a<sub>i</sub></i> такова, что НОД(<i>a<sub>i</sub>, a<sub>j</sub></i>) = НОД(<i>i, j</i>) для всех <i>i ≠ j</i>. Докажите, что <i>a<sub>i</sub> = i</i> для всех <i>i</i> ∈ <b>N</b>.