Олимпиадные задачи из источника «2008-2009»

В некоторых клетках таблицы 10x10 расставлены несколько крести- ков и несколько ноликов. Известно, что нет линии (строки или столб- ца), полностью заполненной одинаковыми значками (крестиками или ноликами). Однако, если в любую пустую клетку поставить любой значок, то это условие нарушится. Какое минимальное число значков может стоять в таблице?

Треугольники <i>ABC</i> и <i>A</i><sub>1</sub><i>B</i><sub>1</sub><i>C</i><sub>1</sub> имеют равные площади. Всегда ли можно построить при помощи циркуля и линейки треугольник <i>A</i><sub>2</sub><i>B</i><sub>2</sub><i>C</i><sub>2</sub>, равный треугольнику <i>A</i><sub>1</sub><i>B</i><sub>1</sub><i>C</i><sub>1</sub> и такой, что прямые <i>AA</i><sub>2</sub>, <i>BB</i><sub>2</sub> и <i>CC</i><sub>2</sub> будут параллельны?

Восемь клеток одной диагонали шахматной доски назовём забором. Ладья ходит по доске, не наступая на одну и ту же клетку дважды и не наступая на клетки забора (промежуточные клетки не считаются посещёнными). Какое наибольшее число прыжков через забор может совершить ладья?

Можно ли раскрасить натуральные числа в 2009 цветов так, чтобы каждый цвет встречался бесконечное число раз, и не нашлось тройки чисел, покрашенных в три различных цвета, таких, что произведение двух из них равно третьему?

Числа <i>a, b</i> и <i>c</i> таковы, что  (<i>a + b</i>)(<i>b + c</i>)(<i>c + a</i>) = <i>abc</i>,  (<i>a</i>³ + <i>b</i>³)(<i>b</i>³ + <i>c</i>³)(<i>c</i>³ + <i>a</i><sup>3</sup>) = <i>a</i>³<i>b</i>³<i>c</i>³.  Докажите, что  <i>abc</i> = 0.

По кругу стоят 100 напёрстков. Под одним из них спрятана монетка. За один ход разрешается перевернуть четыре напёрстка и проверить, лежит ли под одним из них монетка. После этого их возвращают в исходное положение, а монетка перемещается под один из соседних с ней напёрстков. За какое наименьшее число ходов наверняка удастся обнаружить монетку?

Дано натуральное  <i>n</i> > 1.  Число  <i>a > n</i>²  таково, что среди чисел  <i>a</i> + 1, <i>a</i> + 2, ..., <i>a + n</i>  есть кратные каждого из чисел  <i>n</i>² + 1, <i>n</i>² + 2, ..., <i>n</i>² + <i>n</i>.

Докажите, что  <i>a > n</i><sup>4</sup> – <i>n</i>³.

В треугольнике <i> ABC </i>проведена биссектриса <i> BD </i>(точка <i> D </i>лежит на отрезке <i> AC </i>). Прямая <i> BD </i>пересекает окружность <i> Ω </i>, описанную около треугольника <i> ABC </i>, в точках <i> B </i>и <i> E </i>. Окружность <i> ω </i>, построенная на отрезке <i> DE </i>как на диаметре, пересекает окружность <i> Ω </i>в точках <i> E </i>и <i> F </i>. Докажите, что прямая, симметричная прямой <i> BF </i>относительно прямой <i> BD </i>, содержит медиану треугольника <i> ABC </i>.

Знаменатели двух несократимых дробей равны 600 и 700. Найдите наименьшее возможное значение знаменателя их суммы (в несократимой записи).

Даны натуральные числа <i>x</i> и <i>y</i> из отрезка  [2, 100].  Докажите, что при некотором натуральном <i>n</i> число <i>x</i><sup>2<i><sup>n</sup></i></sup> + <i>y</i><sup>2<i><sup>n</sup></i></sup>  – составное.

Окружность с центром <i> I </i>касается сторон <i> AB </i>,<i> BC </i>,<i> AC </i>неравнобедренного треугольника <i> ABC </i>в точках<i> C<sub>1</sub> </i>,<i> A<sub>1</sub> </i>,<i> B<sub>1</sub> </i>соответственно. Окружности <i> ω<sub>B</sub> </i>и <i> ω<sub>C</sub> </i>вписаны в четырехугольники <i> BA<sub>1</sub>IC<sub>1</sub> </i>и <i> CA<sub>1</sub>IB<sub>1</sub> </i>соответственно. Докажите, что общая внутренняя касательная к <i> ω<sub>B</sub> </i>и <i> ω<sub>C</sub> </i>, отличная от ...

  В королевстве <i>N</i> городов, некоторые пары которых соединены непересекающимися дорогами с двусторонним движением (города из такой пары называются <i>соседними</i>). При этом известно, что из каждого города можно доехать до любого другого, но невозможно, выехав из некоторого города и двигаясь по различным дорогам, вернуться в исходный город.

  Однажды Король провел такую реформу: каждый из <i>N</i> мэров городов стал снова мэром одного из <i>N</i> городов, но, возможно, не того города, в котором он работал до реформы. Оказалось, что каждые два мэра, работавшие в соседних городах до реформы, оказались в соседних городах и после реформы. Докажите, что либо найдётся город, в котором мэр после реформы не поменялся, либо найдётся пара сос...

В бесконечной возрастающей последовательности натуральных чисел каждое делится хотя бы на одно из чисел 1005 и 1006, но ни одно не делится на 97. Кроме того, каждые два соседних числа отличаются не более чем на <i>k</i>. При каком наименьшем <i>k</i> такое возможно?

По кругу стоят2009целых неотрицательных чисел, не превышающих 100. Разрешается прибавить по1к двум соседним числам, причем с любыми двумя соседними числами эту операцию можно проделать не более<i> k </i> раз. При каком наименьшем<i> k </i>все числа гарантированно можно сделать равными?

Сколько раз функция   <i>f</i>(<i>x</i>) = cos <i>x</i> cos <sup><i>x</i></sup>/<sub>2</sub> cos <sup><i>x</i></sup>/<sub>3</sub> ... cos <sup><i>x</i></sup>/<sub>2009</sub>   меняет знак на отрезке  [0, <sup>2009π</sup>/<sub>2</sub>] ?

Найдите все такие натуральные <i>n</i>, что при некоторых отличных от нуля действительных числах <i>a, b, c, d</i> многочлен  (<i>ax + b</i>)<sup>1000</sup> – (<i>cx + d</i>)<sup>1000</sup>  после раскрытия скобок и приведения всех подобных слагаемых имеет ровно <i>n</i> ненулевых коэффициентов.

На сторонах<i> AB </i>и<i> BC </i>параллелограмма<i> ABCD </i>выбраны точки<i> A<sub>1</sub> </i>и<i> C<sub>1</sub> </i>соответственно. Отрезки<i> AC<sub>1</sub> </i>и<i> CA<sub>1</sub> </i>пересекаются в точке<i> P </i>. Описанные окружности треугольников <i> AA<sub>1</sub>P </i>и<i> CC<sub>1</sub>P </i>вторично пересекаются в точке<i> Q </i>, лежащей внутри треугольника <i> ACD </i>. Докажите, что<i> <img align="absmiddle" src="/storage/problem-media/115402/problem_115402_img_2.gif"> PDA=<img align="absmiddle" src="/storage/...

В некоторых клетках доски 10×10 поставили <i>k</i> ладей, и затем отметили все клетки, которые бьёт хотя бы одна ладья (ладья бьёт и клетку, на которой стоит). При каком наибольшем <i>k</i> может оказаться, что после удаления с доски любой ладьи хотя бы одна отмеченная клетка окажется не под боем?

Пусть1<i><a<img align="absmiddle" src="/storage/problem-media/115400/problem_115400_img_2.gif"> b<img align="absmiddle" src="/storage/problem-media/115400/problem_115400_img_2.gif"> c </i>. Докажите, что <center><i>

log <sub>a</sub> b+log <sub>b</sub> c+log <sub>c</sub> a<img align="absmiddle" src="/storage/problem-media/115400/problem_115400_img_2.gif">log <sub>b</sub> a+log <sub>c</sub> b+log <sub>a</sub> c.

</i></center>

На плоскости отмечены все точки с целыми координатами (<i>x,y</i>)такие, что<i> x<sup>2</sup>+y<sup>2</sup><img align="absmiddle" src="/storage/problem-media/115399/problem_115399_img_2.gif"> </i>10<i></i>10. Двое играют в игру (ходят по очереди). Первым ходом первый игрок ставит фишку в какую-то отмеченную точку и стирает ее. Затем каждым очередным ходом игрок переносит фишку в какую-то другую отмеченную точку и стирает ее. При этом длины ходов должны все время увеличиваться; кроме того, запрещено делать ход из точки в симметричную ей относительно центра. Проигрывает тот, кто не может сделать ход. Кто из играющих может обеспечить себе победу, как бы ни играл его соперник?

В треугольной пирамиде <i> ABCD </i>все плоские углы при вершинах — не прямые, а точки пересечения высот в треугольниках <i> ABC </i>,<i> ABD </i>,<i> ACD </i>лежат на одной прямой. Докажите, что центр описанной сферы пирамиды лежит в плоскости, проходящей через середины ребер <i> AB </i>,<i> AC </i>,<i> AD </i>.

Последовательность<i> a<sub>1</sub>,a<sub>2</sub>,.. </i>такова, что<i> a<sub>1</sub><img align="absmiddle" src="/storage/problem-media/115397/problem_115397_img_2.gif"></i>(1<i>,</i>2)и<i> a<sub>k+</sub></i>1<i>=a<sub>k</sub>+<img align="absmiddle" src="/storage/problem-media/115397/problem_115397_img_3.gif"> </i>при любом натуральном <i> k </i>. Докажите, что в ней не может существовать более одной пары членов с целой суммой.

В стране некоторые пары городов соединены дорогами, которые не пересекаются вне городов. В каждом городе установлена табличка, на которой указана минимальная длина маршрута, выходящего из этого города и проходящего по всем остальным городам страны (маршрут может проходить по некоторым городам больше одного раза и не обязан возвращаться в исходный город). Докажите, что любые два числа на табличках отличаются не более чем в полтора раза.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка