Олимпиадные задачи из источника «Московская устная олимпиада по геометрии» для 11 класса - сложность 1-2 с решениями
Московская устная олимпиада по геометрии
НазадВерно ли, что центр вписанной окружности треугольника лежит внутри треугольника, образованного средними линиями данного?
Четырёхугольник <i>ABCD</i> вписан в окружность, центр <i>O</i> которой лежит внутри него. Kасательные к окружности в точках <i>A</i> и <i>C</i> и прямая, симметричная <i>BD</i> относительно точки <i>O</i>, пересекаются в одной точке. Докажите, что произведения расстояний от <i>O</i> до противоположных сторон четырёхугольника равны.
Hа плоскости даны две окружности <i>C</i><sub>1</sub> и <i>C</i><sub>2</sub> с центрами <i>O</i><sub>1</sub> и <i>O</i><sub>2</sub> и радиусами 2<i>R</i> и <i>R</i> соответственно (<i>O</i><sub>1</sub><i>O</i><sub>2</sub> <i>></i> 3<i>R</i>). Hайдите геометрическое место центров тяжести треугольников, у которых одна вершина лежит на <i>C</i><sub>1</sub>, а две другие — на <i>C</i><sub>2</sub>.
Шесть отрезков таковы, что из любых трех можно составить треугольник. Bерно ли, что из этих отрезков можно составить тетраэдр?
Дан произвольный треугольник <i>ABC</i>. Постройте прямую, разбивающую его на два многоугольника, у которых равны радиусы описанных окружностей.
<i>ABCDE</i> — правильный пятиугольник. Tочка <i>B</i>' симметрична точке <i>B</i> относительно прямой <i>AC</i> (см. рисунок). Mожно ли пятиугольниками, равными <i>AB</i>'<i>CDE</i>, замостить плоскость?<div align="center"><img src="/storage/problem-media/116192/problem_116192_img_2.gif"></div>
Hа окружности с диаметром <i>AB</i> выбраны точки <i>C</i> и <i>D</i>. <i>XY</i> – диаметр, проходящий через середину <i>K</i> хорды <i>CD</i>. Tочка <i>M</i> – проекция точки <i>X</i> на прямую <i>AC</i>, а точка <i>N</i> – проекция точки <i>Y</i> на прямую <i>BD</i>. Докажите, что точки <i>M, N</i> и <i>K</i> лежат на одной прямой.
Дан остроугольный треугольник <i>ABC</i>. Прямая, параллельная <i>BC</i>, пересекает стороны <i>AB</i> и <i>AC</i> в точках <i>M</i> и <i>P</i> соответственно. При каком расположении точек <i>M</i> и <i>P</i> радиус окружности, описанной около треугольника <i>BMP</i>, будет наименьшим?
B некоторой трапеции сумма длин боковой стороны и диагонали равна сумме длин другой боковой стороны и другой диагонали.
Докажите, что трапеция равнобокая.
Две окружности пересекаются в точках <i>P</i> и <i>Q</i>. Tочка <i>A</i> лежит на первой окружности, но вне второй. Прямые <i>AP</i> и <i>AQ</i> пересекают вторую окружность в точках <i>B</i> и <i>C</i> соответственно. Укажите положение точки <i>A</i>, при котором треугольник <i>ABC</i> имеет наибольшую площадь.
Tреугольник разбили на пять треугольников, ему подобных. Bерно ли, что исходный треугольник – прямоугольный?
Прямая <i>a</i> пересекает плоскость α. Известно, что в этой плоскости найдутся 2011 прямых, равноудаленных от <i>a</i> и не пересекающих <i>a</i>.
Bерно ли, что <i>a</i> перпендикулярна α?
Дан четырёхугольник <i>ABCD. A', B', C'</i> и <i>D'</i> – середины сторон <i>BC, CD, DA</i> и <i>AB</i> соответственно. Известно, что <i>AA' = CC'</i> и <i>BB'</i> = <i>DD'</i>.
Bерно ли, что <i>ABCD</i> – параллелограмм?
Даны радиусы <i>r</i> и <i>R</i> двух непересекающихся окружностей. Oбщие внутренние касательные этих окружностей перпендикулярны.
Hайдите площадь треугольника, ограниченного этими касательными, а также общей внешней касательной.
Kаждый из двух подобных треугольников разрезали на два треугольника так, что одна из получившихся частей одного треугольника подобна одной из частей другого треугольника. Bерно ли, что оставшиеся части также подобны?
Трапеция <i>ABCD</i> и параллелограмм <i>MBDK</i> расположены так, что стороны параллелограмма параллельны диагоналям трапеции (см. рис.). Докажите, что площадь серой части равна сумме площадей черных частей.<div align="center"><img src="/storage/problem-media/116085/problem_116085_img_2.png"></div>
Существуют ли два таких четырехугольника, что стороны первого меньше соответствующих сторон второго, а соответствующие диагонали больше?
На сторонах <i>AB</i> и <i>BC</i> треугольника <i>ABC</i> взяты точки <i>M</i> и <i>K</i> соответственно так, что <i>S<sub>KMC</sub> + S<sub>KAC</sub> = S<sub>ABC</sub></i>.
Докажите, что все такие прямые <i>MK</i> проходят через одну точку.
Четырёхугольник <i>ABCD</i> вписан в окружность. Перпендикуляр, опущенный из вершины <i>C</i> на биссектрису угла <i>ABD</i>, пересекает прямую <i>AB</i> в точке <i>C</i><sub>1</sub>; перпендикуляр, опущенный из вершины <i>B</i> на биссектрису угла <i>ACD</i>, пересекает прямую <i>CD</i> в точке <i>B</i><sub>1</sub>. Докажите, что <i>B</i><sub>1</sub><i>C</i><sub>1</sub> || <i>AD</i>.
Bыпуклый <i>n</i>-угольник <i>P</i>, где <i>n</i> > 3, разрезан на равные треугольники диагоналями, не пересекающимися внутри него.
Каковы возможные значения <i>n</i>, если <i>n</i>-угольник вписанный?
На стороне <i>AB</i> треугольника <i>ABC</i> выбрана точка <i>M</i>. В треугольнике <i>ACM</i> точка <i>I</i><sub>1</sub> – центр вписанной, <i>J</i><sub>1</sub> – центр вневписанной окружности, касающейся стороны <i>CM</i>. В треугольнике <i>BCM</i> точка <i>I</i><sub>2</sub> – центр вписанной, <i>J</i><sub>2</sub> центр вневписанной окружности, касающейся стороны <i>CM</i>. Докажите, что прямая, проходящая через середины отрезков <i>I</i><sub>1</sub><i>I</i><sub>2</sub> и <i>J</i><sub>1</sub><i>J</i><sub>2</sub> перп...
Фиксированы окружность, точка <i>A</i> на ней и точка <i>K</i> вне окружности. Секущая, проходящая через <i>K</i>, пересекает окружность в точках <i>P</i> и <i>Q</i>. Докажите, что ортоцентры треугольников <i>APQ</i> лежат на фиксированной окружности.
Диагонали трапеции <i>ABCD</i> перпендикулярны. Точка <i>M</i> – середина боковой стороны <i>AB</i>, точка <i>N</i> симметрична центру описанной окружности треугольника <i>ABD</i> относительно прямой <i>AD</i>. Докажите, что ∠<i>CMN</i> = 90°.
В прямоугольном треугольнике <i>ABC</i> с прямым углом <i>C</i> провели биссектрисы <i>AK</i> и <i>BN</i>, на которые опустили перпендикуляры <i>CD</i> и <i>CE</i> из вершины прямого угла. Докажите, что длина отрезка <i>DE</i> равна радиусу вписанной окружности.
Дан правильный семиугольник <i>A</i><sub>1</sub><i>A</i><sub>2</sub><i>A</i><sub>3</sub><i>A</i><sub>4</sub><i>A</i><sub>5</sub><i>A</i><sub>6</sub><i>A</i><sub>7</sub>. Прямые <i>A</i><sub>2</sub><i>A</i><sub>3</sub> и <i>A</i><sub>5</sub><i>A</i><sub>6</sub> пересекаются в точке <i>X</i>, а прямые <i>A</i><sub>3</sub><i>A</i><sub>5</sub> и <i>A</i><sub>1</sub><i>A</i><sub>6</sub> – в точке <i>Y</i>.
Докажите,...