Олимпиадные задачи из источника «1971 год» - сложность 3 с решениями
В колбе находится колония из<i>n</i>бактерий. В какой-то момент внутрь колбы попадает вирус. В первую минуту вирус уничтожает одну бактерию, и сразу же после этого и вирус, и оставшиеся бактерии делятся пополам. Во вторую минуту новые два вируса уничтожают две бактерии, а затем и вирусы, и оставшиеся бактерии снова делятся пополам, и т.д. Наступит ли такой момент времени, когда не останется ни одной бактерии?
В клетки таблицы <i>m×n</i> вписаны некоторые числа. Разрешается одновременно менять знак у всех чисел некоторого столбца или некоторой строки. Доказать, что многократным повторением этой операции можно превратить данную таблицу в такую, у которой суммы чисел, стоящих в каждом столбце и каждой строке, неотрицательны.
Собралось <i>n</i> человек. Некоторые из них знакомы между собой, причём каждые два незнакомых имеют ровно двух общих знакомых, а каждые два знакомых не имеют общих знакомых. Доказать, что каждый из присутствующих знаком с одинаковым числом человек.
Дано <i>n</i> чисел, <i>x</i><sub>1</sub>, <i>x</i><sub>2</sub>, ..., <i>x<sub>n</sub></i>, при этом <i>x<sub>k</sub></i> = ±1. Доказать, что если <i>x</i><sub>1</sub><i>x</i><sub>2</sub> + <i>x</i><sub>2</sub><i>x</i><sub>3</sub> + ... + <i>x<sub>n</sub>x</i><sub>1</sub> = 0, то <i>n</i> делится на 4.
В некотором множестве введена<nobr>операция <font face="Symbol"></font>,</nobr>которая по каждым двум элементам<i>a</i><nobr>и <i>b</i></nobr>этого множества вычисляет некоторый элемент<i>a</i><font face="Symbol"></font><i>b</i>этого множества. Известно, что:<nobr>1°. Для любых трех элементов <i>a</i>, <i>b</i> и <i>c</i></nobr> <nobr> <i>a</i><font face="Symbol"></font>(<i>b</i><font face="Symbol"></font><i>c</i>) = <i>b</i><font face="Symbol">*</font>(<i>c</i><font face="Symbo...
По кругу выписано несколько чисел. Если для некоторых четырёх идущих подряд чисел <i>a, b, c, d</i> произведение чисел <i>a – d</i> и <i>b – c</i> отрицательно, то числа <i>b</i> и <i>c</i> можно поменять местами. Докажите, что такие операции можно проделать лишь конечное число раз.
Для любого натурального числа <i>n</i> существует составленное из цифр 1 и 2 число, делящееся на 2<sup><i>n</i></sup>. Докажите это.
(Например, на 2 делится 2, на 4 делится 12, на 8 делится 112, на 16 делится 2112...)
а) Дан выпуклый многоугольник <i>A</i><sub>1</sub><i>A</i><sub>2</sub>...<i>A<sub>n</sub></i>. На стороне <i>A</i><sub>1</sub><i>A</i><sub>2</sub> взяты точки <i>B</i><sub>1</sub> и <i>D</i><sub>2</sub>, на стороне <i>A</i><sub>2</sub><i>A</i><sub>3</sub> – точки <i>B</i><sub>2</sub> и <i>D</i><sub>3</sub>, ..., на стороне <i>A</i><sub><i>n</i></sub><i>A</i><sub>1</sub> – точки <i>B</i><sub><i>n</i></sub> и <i>D</i><sub&g...
Исследуйте, сколько решений имеет система уравнений
<i>x</i>² + <i>y</i>² + <i>xy = a</i>,
<i>x</i>² – <i>y</i>² = <i>b</i>,
где <i>а</i> и <i>b</i> – некоторые данные действительные числа.
Про пять положительных чисел известно, что если из суммы любых трёх из них вычесть сумму двух оставшихся, то разность будет положительной. Докажите, что произведение всех десяти таких разностей не превосходит квадрата произведения данных пяти чисел.
Если в каждой вершине выпуклого многогранника сходятся не менее чем четыре ребра, то хотя бы одна из его граней – треугольник.
Докажите это.
Если<nobr><i>x</i><sub>1</sub> < <i>x</i><sub>2</sub> < <i>x</i><sub>3</sub> < ... < <i>x</i><sub><i>n</i></sub> —</nobr>натуральные числа, то сумма<nobr><i>n</i> – 1</nobr>дробей,<nobr><i>k</i>-я из</nobr>которых, где<nobr><i>k</i> < <i>n</i>,</nobr>равна отношению квадратного корня из разности<nobr><i>x</i><sub><i>k</i>+1</sub> - <i>x</i><sub><i>k</i></sub></nobr>к числу<i>x</i><sub><i>k</i>+1</sub>, меньше суммы чисел 1,<sup>1</sup>/<sub&g...
В любом выпуклом многоугольнике, кроме параллелограмма, можно выбрать три стороны, при продолжении которых образуется треугольник, объемлющий данный многоугольник. Докажите это.
а) Дно прямоугольной коробки было выложено плитками размерами 2×2 и 1×4. Плитки высыпали из коробки и при этом потеряли одну плитку 2×2. Вместо неё удалось достать плитку 1×4. Докажите, что теперь выложить дно коробки плитками не удастся.
б) Останется ли верным утверждение задачи, если вместо плиток 1×4 и 2×2 рассматривать плитки из трёх квадратиков: прямоугольные 1×3 и "уголки").
На кольцевой автомобильной дороге стоят несколько одинаковых автомашин. Если бы весь бензин, имеющийся в этих автомашинах, слили в одну, то эта машина смогла бы проехать по всей кольцевой дороге и вернуться на прежнее место. Докажите, что хотя бы одна из этих машин может объехать всё кольцо, забирая по пути бензин у остальных машин.
Пусть <i>p</i> – произвольное вещественное число. Найдите все такие <i>x</i>, что сумма кубических корней из чисел 1 – <i>x</i> и 1 + <i>x</i> равна <i>p</i>.
а) Прямоугольная таблица из <i>m</i> строк и <i>n</i> столбцов заполнена числами. Переставим числа в каждой строке в порядке возрастания. Если после этого переставить числа в каждом столбце в порядке возрастания, то в каждой строке они по-прежнему будут стоять в порядке возрастания. Докажите это.
б) Что будет, если действовать в другом порядке: в первоначальной таблице сначала переставить числа по возрастанию в столбцах, а потом – в строках: получится ли в результате та же самая таблица, что и в первом случае, или другая?
Число 76 обладает таким любопытным свойством: последние две цифры числа 76² = 5776 – это снова 76.
а) Есть ли ещё такие двузначные числа?
б) Найдите все такие трёхзначные числа <i>A</i>, что последние три цифры числа <i>A</i>² составляют число <i>А</i>.
в) Существует ли такая бесконечная последовательность цифр <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, <i>a</i><sub>3</sub>, ..., что для любого натурального <i>n</i> квадрат числа <span style="text-decoration: overline;"><i>a<sub>n</sub>a</i><sub><i>n</i>–1</sub>...<i>a</i><sub>2</sub><i>a</i><sub>1<...
Вот несколько примеров, когда сумма квадратов<nobr><i>k</i> последовательных</nobr>натуральных чисел равна сумме квадратов<nobr><i>k</i> – 1</nobr>следующих натуральных чисел:3<sup>2</sup> + 4<sup>2</sup> = 5<sup>2</sup>, 36<sup>2</sup> + 37<sup>2</sup> + 38<sup>2</sup> + 39<sup>2</sup> + 40<sup>2</sup> = 41<sup>2</sup> + 42<sup>2</sup> + 43<sup>2</sup> + 44<sup>2</sup>, 55<sup>2</sup> + 56<sup>2</sup> + 57<sup>2</sup> + 58<sup>2</sup> + 59<sup>2</sup> + 60<sup>2</sup> = 61<sup>2</sup> + 62<sup>2</sup> + 63...
<table> <tr> <td valign="middle"> <img src="/storage/problem-media/73600/problem_73600_img_2.jpg"> </td> <td valign="top"> а) Пусть <nobr>0 < <i>k</i> < 1.</nobr> На сторонах <i>AB</i>, <i>BC</i> и <i>CA</i> треугольника <i>ABC</i> отметим точки <i>E</i>, <i>А</i> и <i>G</i> таким образом, что <i>AE</i> : <i>EB</i> = <i>BF</i> : <i>FC</i> = <i>CG</i> : <i>GA</i> = <i>k</i>. Найдите отношение площади треугольника, образованного прямыми <i>АF</i>, <i>BG</i> <nobr>и <i>CE</i>,</nobr> к...
Можно ли из 18 плиток размером 1×2 выложить квадрат так, чтобы при этом не было ни одного прямого "шва", соeдиняющего противоположные стороны квадрата и идущего по краям плиток? Например, такое расположение плиток, как на рисунке, не годится, так как здесь есть красный "шов".<div align="center"><img src="/storage/problem-media/73598/problem_73598_img_2.gif"></div>
Точки <i>P</i> и <i>Q</i> движутся с одинаковой постоянной скоростью <i>v</i> по двум прямым, пересекающимся в точке <i>O</i>.
Докажите, что на плоскости существует неподвижная точка <i>A</i>, расстояния от которой до точек <i>P</i> и <i>Q</i> в любой момент времени равны.
а) Докажите, что любая прямая, делящая пополам площадь и периметр треугольника, проходит через центр вписанной окружности.
б) Докажите аналогичное утверждение для любого описанного многоугольника.
Три окружности радиуса <i>R</i>проходят через точку <i>H</i>; <i>A</i>,<i>B</i>и <i>C</i> — точки их попарного пересечения, отличные от <i>H</i>. Докажите, что: а) <i>H</i> — точка пересечения высот треугольника <i>ABC</i>; б) радиус описанной окружности треугольника <i>ABC</i>тоже равен <i>R</i>.
Внутри квадрата <!-- MATH $A_{1}A_{2}A_{3}A_{4}$ --> <i>A</i><sub>1</sub><i>A</i><sub>2</sub><i>A</i><sub>3</sub><i>A</i><sub>4</sub> взята точка <i>P</i>. Из вершины <i>A</i><sub>1</sub> опущен перпендикуляр на <i>A</i><sub>2</sub><i>P</i>, из <i>A</i><sub>2</sub> — перпендикуляр на <i>A</i><sub>3</sub><i>P</i>, из <i>A</i><sub>3</sub> — на <i>A</i><sub>4</sub><i>P</i>, из <i>A</i><sub>4</sub> — на <i>A</i><sub>1</sub><i>P</i>. Докажите...