Олимпиадные задачи из источника «выпуск 5»

Для любых натуральных чисел <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, ..., <i>a<sub>m</sub></i>, никакие два из которых не равны друг другу и ни одно из которых не делится на квадрат натурального числа, большего единицы, а также для любых целых и отличных от нуля целых чисел <i>b</i><sub>1</sub>, <i>b</i><sub>2</sub>, ..., <i>b<sub>m</sub></i> сумма   <img align="absmiddle" src="/storage/problem-media/73620/problem_73620_img_2.gif">   не равна нулю. Докажите это.

Докажите, что числа 1, 2, ..., <i>n</i> ни при каком  <i>n</i> > 1  нельзя разбить на два множества так, чтобы произведение чисел одного из них равнялось произведению чисел другого.

На кольцевой автомобильной дороге стоят несколько одинаковых автомашин. Если бы весь бензин, имеющийся в этих автомашинах, слили в одну, то эта машина смогла бы проехать по всей кольцевой дороге и вернуться на прежнее место. Докажите, что хотя бы одна из этих машин может объехать всё кольцо, забирая по пути бензин у остальных машин.

Внутри квадрата <!-- MATH $A_{1}A_{2}A_{3}A_{4}$ --> <i>A</i><sub>1</sub><i>A</i><sub>2</sub><i>A</i><sub>3</sub><i>A</i><sub>4</sub> взята точка <i>P</i>. Из вершины <i>A</i><sub>1</sub> опущен перпендикуляр на <i>A</i><sub>2</sub><i>P</i>, из <i>A</i><sub>2</sub> — перпендикуляр на <i>A</i><sub>3</sub><i>P</i>, из <i>A</i><sub>3</sub> — на <i>A</i><sub>4</sub><i>P</i>, из <i>A</i><sub>4</sub> — на <i>A</i><sub>1</sub><i>P</i>. Докажите...

Пусть <i>A</i> – основание перпендикуляра, опущенного из центра данной окружности на данную прямую <i>l</i>. На этой прямой взяты еще две точки <i>B</i> и <i>C</i> так, что

<i>AB = AC</i>.  Через точки <i>B</i> и <i>C</i> проведены две произвольные секущие, из которых одна пересекает окружность в точках <i>P</i> и <i>Q</i>, вторая – в точках <i>M</i> и <i>N</i>. Пусть прямые <i>PM</i> и <i>QN</i> пересекают прямую <i>l</i> в точках <i>R</i> и <i>S</i>. Докажите, что  <i>AR = AS</i>.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка