Олимпиадные задачи из источника «Прасолов В.В., Задачи по планиметрии» для 7 класса - сложность 4-5 с решениями
Прасолов В.В., Задачи по планиметрии
НазадНа плоскости расположено<i>n</i>$\ge$5 окружностей так, что любые три из них имеют общую точку. Докажите, что тогда и все окружности имеют общую точку.
На окружности отметили 4<i>n</i>точек и окрасили их через одну в красный и синий цвета. Точки каждого цвета разбили на пары, а точки каждой пары соединили отрезками того же цвета. Докажите, что если никакие три отрезка не пересекаются в одной точке, то найдется по крайней мере <i>n</i>точек пересечения красных отрезков с синими.
Точка <i>O</i>, лежащая внутри выпуклого многоугольника<i>A</i><sub>1</sub>...<i>A</i><sub>n</sub>, обладает тем свойством, что любая прямая<i>OA</i><sub>i</sub>содержит еще одну вершину <i>A</i><sub>j</sub>. Докажите, что кроме точки <i>O</i>никакая другая точка не обладает этим свойством.
Разрежьте разносторонний треугольник на 7 равнобедренных, три из которых равны.
Разрежьте произвольный тупоугольный треугольник на 7 остроугольных.
Можно ли какой-нибудь невыпуклый 5-угольник разрезать на два равных 5-угольника?
Разрежьте квадрат на 8 остроугольных треугольников.
а) Докажите, что любой неравносторонний треугольник можно разрезать на неравные треугольники, подобные исходному. б) Докажите, что правильный треугольник нельзя разрезать на неравные правильные треугольники.
В парке растет 10000 деревьев, посаженных квадратно-гнездовым способом (100 рядов по 100 деревьев). Какое наибольшее число деревьев можно срубить, чтобы выполнялось следующее условие: если встать на любой пень, то не будет видно ни одного другого пня? (Деревья можно считать достаточно тонкими.)
Дана окружность и точка вне её; из этой точки мы совершаем путь по замкнутой ломаной, состоящей из отрезков прямых, касательных к окружности, и заканчиваем путь в начальной точке. Участки пути, по которым мы приближались к центру окружности, берём со знаком плюс, а участки пути, по которым мы удалялись от центра, — со знаком минус. Докажите, что для любого такого пути сумма длин участков пути, взятых с указанными знаками, равна нулю.
На каждой стороне четырехугольника <i>ABCD</i>взято по две точки, и они соединены так, как показано на рис. Докажите, что если все пять заштрихованных четырехугольников описанные, то четырехугольник <i>ABCD</i>тоже описанный. <div align="center"><img src="/storage/problem-media/56664/problem_56664_img_2.gif" border="1"></div>
Дан параллелограмм <i>ABCD</i>. Вневписанная окружность треугольника<i>ABD</i>касается продолжений сторон <i>AD</i>и <i>AB</i>в точках <i>M</i>и <i>N</i>. Докажите, что точки пересечения отрезка <i>MN</i>с <i>BC</i>и <i>CD</i>лежат на вписанной окружности треугольника <i>BCD</i>.
К двум окружностям различного радиуса проведены общие внешние касательные <i>AB</i>и <i>CD</i>. Докажите, что четырехугольник <i>ABCD</i>описанный тогда и только тогда, когда окружности касаются.
Дан треугольник <i>ABC</i>. Докажите, что существует два семейства правильных треугольников, стороны которых (или их продолжения) проходят через точки <i>A</i>,<i>B</i>и <i>C</i>. Докажите также, что центры треугольников этих семейств лежат на двух концентрических окружностях.
Многоугольник <i>A</i><sub>1</sub><i>A</i><sub>2</sub>...<i>A</i><sub>2n</sub>вписанный. Про все пары его противоположных сторон, кроме одной, известно, что они параллельны. Докажите, что при <i>n</i>нечетном оставшаяся пара сторон тоже параллельна, а при <i>n</i>четном оставшаяся пара сторон равна по длине.