Олимпиадные задачи из источника «глава 6. Многоугольники» для 10 класса - сложность 1-5 с решениями

Доказать, что можно расставить в вершинах правильного <i>n</i>-угольника действительные числа <i>x</i><sub>1</sub>, <i>x</i><sub>2</sub>, ..., <i>x<sub>n</sub></i>, все отличные от 0, так, чтобы для любого правильного <i>k</i>-угольника, все вершины которого являются вершинами исходного <i>n</i>-угольника, сумма чисел, стоящих в его вершинах, равнялась 0.

Правильный <i>n</i>-угольник вписан в единичную окружность. Докажите, что

а) сумма квадратов длин всех сторон и всех диагоналей равна <i>n</i>²;

б) сумма длин всех сторон и всех диагоналей равна  <i>n</i> ctg <sup>π</sup>/<sub>2<i>n</i></sub>;

в) произведение длин всех сторон и всех диагоналей равно  <i>n</i><sup><i>n</i>/2</sup>.

Докажите, что точки пересечения противоположных сторон (если эти стороны не параллельны) вписанного шестиугольника лежат на одной прямой (Паскаль).

Докажите, что сумма расстояний от произвольной точки <i>X</i> до вершин правильного <i>n</i>-угольника будет наименьшей, если <i>X</i> – центр <i>n</i>-угольника.

В правильном восемнадцатиугольнике <i>A</i><sub>0</sub>...<i>A</i><sub>17</sub> проведены диагонали <i>A</i><sub>0</sub><i>A</i><sub><i>p</i>+3</sub>, <i>A</i><sub><i>p</i>+1</sub><i>A</i><sub>18–<i>r</i></sub> и <i>A</i><sub>1</sub><i>A</i><sub><i>p</i>+<i>q</i>+3</sub>.

Докажите, что указанные диагонали пересекаются в одной точке в любом из следующих случаев:

  а)  {<i>p, q, r</i>} = {1, 3, 4},

  б)  {<i>p, q, r</i>} = {2, 2, 3}.

а) Противоположные стороны выпуклого шестиугольника<i>ABCDEF</i>попарно параллельны. Докажите, что этот шестиугольник вписанный тогда и только тогда, когда его диагонали<i>AD</i>,<i>BE</i>и<i>CF</i>равны. б) Докажите аналогичное утверждение для невыпуклого (возможно, самопересекающегося) шестиугольника.

Правильный пятиугольник <i>ABCDE</i>со стороной <i>a</i>вписан в окружность <i>S</i>. Прямые, проходящие через его вершины перпендикулярно сторонам, образуют правильный пятиугольник со стороной <i>b</i>(см. рис.). Сторона правильного пятиугольника, описанного около окружности <i>S</i>, равна <i>c</i>. Докажите, что <i>a</i><sup>2</sup>+<i>b</i><sup>2</sup>=<i>c</i><sup>2</sup>.

<div align="center"><img src="/storage/problem-media/57059/problem_57059_img_2.gif" border="1"></div>

В равностороннем (неправильном) пятиугольнике <i>ABCDE</i>угол <i>ABC</i>вдвое больше угла <i>DBE</i>. Найдите величину угла <i>ABC</i>.

Окружности $\alpha$,$\beta$,$\gamma$и $\delta$касаются данной окружности в вершинах <i>A</i>,<i>B</i>,<i>C</i>и <i>D</i>выпуклого четырехугольника <i>ABCD</i>. Пусть <i>t</i><sub>$\scriptstyle \alpha$$\scriptstyle \beta$</sub> — длина общей касательной к окружностям $\alpha$и $\beta$(внешней, если оба касания внутренние или внешние одновременно, и внутренней, если одно касание внутреннее, а другое внешнее); <i>t</i><sub>$\scriptstyle \beta$$\scriptstyle \gamma$</sub>,<i>t</i><sub>$\scriptstyle \gamma$$\scriptstyle \delta$</sub>и т. д. определяются аналогично. Докажите, что <i>t</i><sub>$\scriptstyle \alpha$$\scriptstyle \beta$</sub><...

Биссектриса угла <i>A</i>треугольника <i>ABC</i>пересекает описанную окружность в точке <i>D</i>. Докажите, что <i>AB</i>+<i>AC</i>$\leq$2<i>AD</i>.

Расстояния от центра описанной окружности остроугольного треугольника до его сторон равны <i>d</i><sub>a</sub>,<i>d</i><sub>b</sub>и <i>d</i><sub>c</sub>. Докажите, что <i>d</i><sub>a</sub>+<i>d</i><sub>b</sub>+<i>d</i><sub>c</sub>=<i>R</i>+<i>r</i>.

Пусть $\alpha$=$\pi$/7. Докажите, что ${\frac{1}{\sin\alpha }}$=${\frac{1}{\sin 2\alpha }}$+${\frac{1}{\sin 3\alpha }}$.

Из вершин выпуклого четырехугольника опущены перпендикуляры на диагонали. Докажите, что четырехугольник, образованный основаниями перпендикуляров, подобен исходному четырехугольнику.

Четырехугольник <i>ABCD</i>выпуклый; точки <i>A</i><sub>1</sub>,<i>B</i><sub>1</sub>,<i>C</i><sub>1</sub>и <i>D</i><sub>1</sub>таковы, что <i>AB</i>||<i>C</i><sub>1</sub><i>D</i><sub>1</sub>,<i>AC</i>||<i>B</i><sub>1</sub><i>D</i><sub>1</sub>и т. д. для всех пар вершин. Докажите, что четырехугольник <i>A</i><sub>1</sub><i>B</i><sub>1</sub><i>C</i><sub>1</sub><i>D</i><sub>1</sub>тоже выпуклый, причем $\angle$<i>A</i>+$\angle$<i>C</i><sub>1<...

Докажите, что два четырехугольника подобны тогда и только тогда, когда у них равны четыре соответственных угла и соответственные углы между диагоналями.

Пусть <i>О</i> – центр правильного многоугольника <i>A</i><sub>1</sub><i>A</i><sub>2</sub><i>A</i><sub>3</sub>...<i>A<sub>n</sub></i>,  <i>X</i> – произвольная точка плоскости. Докажите, что:

   a)   <img align="middle" src="/storage/problem-media/55373/problem_55373_img_2.gif">    б)   <img align="middle" src="/storage/problem-media/55373/problem_55373_img_3.gif">

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка