Олимпиадные задачи из источника «Алфутова Н.Б., Устинов А.В., Алгебра и теория чисел» для 8 класса - сложность 2 с решениями
Алфутова Н.Б., Устинов А.В., Алгебра и теория чисел
НазадИзвестно, что квадратные уравнения <i>ax</i>² + <i>bx + c</i> = 0 и <i>bx</i>² + <i>cx + a</i> = 0 (<i>a, b</i> и <i>c</i> – отличные от нуля числа) имеют общий корень.
Найдите его.
Доказать, что остаток от деления простого числа на 30 – простое число или единица.
Ваня считает, что дроби "сокращают", зачёркивая одинаковые цифры в числителе и знаменателе. Серёжа заметил, что иногда Ваня получает верные равенства, например, <sup>49</sup>/<sub>98</sub> = <sup>4</sup>/<sub>8</sub>. Найдите все правильные дроби с числителем и знаменателем, состоящими из двух ненулевых цифр, которые можно так "сократить".
Имеется n целых чисел. Доказать, что среди них найдется несколько, или быть может одно, сумма которых делится на n.
Найдите сумму 1·1! + 2·2! + 3·3! + … + <i>n</i>·<i>n</i>!.
Любую ли сумму из целого числа рублей больше семи, можно уплатить без сдачи денежными купюрами по 3 и 5 рублей?
Существует ли степень двойки, из которой перестановкой цифр можно получить другую степень двойки?
Даны два натуральных числа <i>m</i> и <i>n</i>. Выписываются все различные делители числа <i>m</i> – числа <i>a, b, ..., k</i> – и все различные делители числа <i>n</i> – числа <i>s, t, ..., z</i>. (Само число и 1 тоже включаются в число делителей.) Оказалось, что <i>a + b + ... + k = s + t + ... + z</i> и <sup>1</sup>/<sub><i>a</i></sub> + <sup>1</sup>/<sub><i>b</i></sub> + ... + <sup>1</sup>/<sub><i>k</i></sub> = <sup>1</sup>/<sub><i>s</i></sub> + <sup>1</sup>/<sub><i>t</i></sub> + ... + <sup>1</sup>/<sub>&l...
Доказать: число делителей <i>n</i> не превосходит 2<img width="27" height="33" align="MIDDLE" border="0" src="/storage/problem-media/78208/problem_78208_img_2.gif">.
Имеется система уравнений *<i>x + *y + *z</i>= 0, *<i>x + *y + *z</i>= 0, *<i>x + *y + *z</i>= 0.Два человека поочерёдно вписывают вместо звёздочек числа.
Доказать, что начинающий всегда может добиться того, чтобы система имела ненулевое решение.
Известно, что <i>ax</i><sup>4</sup> + <i>bx</i>³ + <i>cx</i>² + <i>dx + e</i>, где <i>a, b, c, d, e</i> – данные целые числа, при любом целом <i>x</i> делится на 7.
Доказать, что все числа <i>a, b, c, d, e</i> делятся на 7.
Дано уравнение <i>x<sup>n</sup> – a</i><sub>1</sub><i>x</i><sup><i>n</i>–1</sup> – <i>a</i><sub>2</sub><i>x</i><sup><i>n</i>–2</sup> – ... – <i>a</i><sub><i>n</i>–1</sub><i>x – a<sub>n</sub></i> = 0, где <i>a</i><sub>1</sub> ≥ 0, <i>a</i><sub>2</sub> ≥ 0, <i>a<sub>n</sub></i> ≥ 0.
Доказать, что это уравнение не может иметь двух положительных корней.
Известно, что модули всех корней уравнений <i>x</i>² + <i>Ax + B</i> = 0, <i>x</i>² + <i>Cx + D</i> = 0 меньше единицы. Доказать, что модули корней уравнения
<i>x</i>² + ½ (<i>A + C</i>)<i>x</i> + ½ (<i>B + D</i>)<i>x</i> = 0 также меньше единицы. <i>A, B, C, D</i> – действительные числа.
Решить систему:
<i>x + y + z = a,
x</i>² + <i>y</i>² + <i>z</i>² = <i>a</i>²,
<i>x</i>³ + <i>y</i>³ + <i>z</i>³ = <i>a</i>³.
Докажите, что для любого нечётного натурального числа <i>a</i> существует такое натуральное число <i>b</i>, что 2<sup><i>b</i></sup> – 1 делится на <i>a</i>.
Упростите выражение (избавьтесь от как можно большего количества знаков корней): <img align="absmiddle" src="/storage/problem-media/64993/problem_64993_img_2.gif"> .
Обозначим через<i>S</i>сумму следующего ряда:<div align="CENTER"> <!-- MATH \begin{equation} S=1-1+1-1+1-\ldots \end{equation} --> <table cellpadding="0" width="100%" align="CENTER"> <tr valign="MIDDLE"> <td nowrap align="CENTER"><i>S</i> = 1 - 1 + 1 - 1 + 1 -...</td> <td nowrap width="10" align="RIGHT"> (12.1)</td></tr> </table></div><br clear="ALL">Преобразовав равенство (<a href="https://mirolimp.ru/tasks/161543">12.1</a>), можно получить уравнение, из которого находится<i>S</i>:<div align="CENTER"> <i>S</i> = 1 - (1 - 1 + 1 - 1 +...) = 1 -...
<b>``65 = 64 = 63''.</b>Тождество Кассини лежит в основе одного геометрического парадокса. Он заключается в том, что можно взять шахматную доску, разрезать ее на четыре части, как показано ниже, а затем составить из этих же частей прямоугольник:
<img width="131" height="131" align="BOTTOM" border="0" src="/storage/problem-media/61541/problem_61541_img_2.gif" alt="\begin{picture} (80,80)\multiput(0,0)(0,10){9}{\line(1,0){80}} \multiput(0,0)(... ...(0,1){80}} \put(0,50){\line(1,0){80}}\qbezier(50,0)(40,25)(30,50) \end{picture}">
<img width="211" height="83" align="BOTTOM" border="0" src="/storage/problem-media/61541/problem_61541_img_3.gi...
Восстановите алфавит племени Мумбо-Юмбо из задачи <a href="https://mirolimp.ru/tasks/160340">2.6</a>.
Квадраты двух зеркальных чисел 12 и 21 также являются зеркальными числами (144 и 441). Какие двузначные числа обладают аналогичным свойством? И дополнительный вопрос: в каких системах счисления число 441 будет полным квадратом?
Иногда, вычитая дроби, можно вычитать их числители и складывать знаменатели. Например: <img align="absMIDDLE" src="/storage/problem-media/61530/problem_61530_img_2.gif">
Для каких дробей это возможно?
Ученик Коля Васин при помощи метода математической индукции смог доказать, что в любом табуне все лошади одной масти. Если есть только одна лошадь, то она своей масти, так что база индукции верна. Для индуктивного перехода предположим, что есть<i>n</i>лошадей (с номерами от 1 до<i>n</i>). По индуктивному предположению лошади с номерами от 1 до<i>n</i>- 1 одинаковой масти. Аналогично лошади с номерами от 2 до<i>n</i>также имеют одинаковую масть. Но лошади с номерами от 2 до<i>n</i>- 1 не могут менять свою масть в зависимости от того как они сгруппированы — это лошади, а не хамелеоны. Поэтому все<i>n</i>лошадей должны быть одинаковой масти. Есть ли ошибка в этом рассуждении, и если есть, то какая?
Обозначим через <i>P<sub>k,l</sub></i>(<i>n</i>) количество разбиений числа <i>n</i> на не более чем <i>k</i> слагаемых, каждое из которых не превосходит <i>l</i>.
Докажите равенства:
а) <i>P<sub>k,l</sub></i>(<i>n</i>) – <i>P</i><sub><i>k,l</i>–1</sub>(<i>n</i>) = <i>P</i><sub><i>k</i>–1,<i>l</i></sub>(<i>n – l</i>);
б) <i>P<sub>k,l</sub></i>(<i>n</i>) – <i>P</i><sub><i>k</i>–1,<i>l</i></sub>(<i>n</i>) = <i>P</i><sub><i>k,l</i>–1</sub&...
Переменные<i>x</i>и<i>y</i>связаны равенством<div align="CENTER"> <i>x</i> = <i>y</i> + <i>y</i><sup>2</sup> + <i>y</i><sup>3</sup> +...+ <i>y</i><sup>n</sup> +... </div>Разложите<i>y</i>по степеням<i>x</i>.
Каков знак<i>n</i>-го члена в разложении произведения<div align="CENTER"> (1 - <i>a</i>)(1 - <i>b</i>)(1 - <i>c</i>)(1 - <i>d</i> )...= 1 - <i>a</i> - <i>b</i> + <i>ab</i> - <i>c</i> + <i>ac</i> + <i>bc</i> - <i>abc</i> - <i>d</i> +... </div>(<i>n</i>= 0, 1, 2,...)?