Олимпиадные задачи по теме «Действительные числа» для 5-8 класса

Докажите, что если выражение<i> <img align="absmiddle" src="/storage/problem-media/115447/problem_115447_img_2.gif"> </i>принимает рациональное значение, то и выражение<i> <img align="absmiddle" src="/storage/problem-media/115447/problem_115447_img_3.gif"> </i>также принимает рациональное значение.

При каких натуральных <i>n</i> найдутся такие положительные рациональные, но не целые числа <i>a</i> и <i>b</i>, что оба числа  <i>a + b</i>  и  <i>a<sup>n</sup> + b<sup>n</sup></i>  – целые?

Ненулевые числа <i>a</i> и <i>b</i> удовлетворяют равенству  <i>a</i>²<i>b</i>²(<i>a</i>²<i>b</i>² + 4) = 2(<i>a</i><sup>6</sup> + <i>b</i><sup>6</sup>).  Докажите, что хотя бы одно из них иррационально.

Найдите сумму <center> <img src="/storage/problem-media/109715/problem_109715_img_2.gif">

</center>

Докажите, что при любом натуральном <i>n</i> справедливо неравенство   <img align="absmiddle" src="/storage/problem-media/109704/problem_109704_img_2.gif">

Бесконечная последовательность чисел <i>x<sub>n</sub></i> определяется условиями:   <i>x</i><sub><i>n</i>+1</sub> = 1 – |1 – 2<i>x<sub>n</sub></i>|,  причём  0 ≤ <i>x</i><sub>1</sub> ≤ 1.

Докажите, что последовательность, начиная с некоторого места, периодическая  а) в том  б) и только в том случае, когда <i>x</i><sub>1</sub> рационально.

Решить уравнение  [<i>x</i>³] + [<i>x</i>²] + [<i>x</i>] = {<i>x</i>} − 1.

а) Квадрат разрезан на равные прямоугольные треугольники с катетами 3 и 4 каждый. Докажите, что число треугольников чётно. б) Прямоугольник разрезан на равные прямоугольные треугольники с катетами 1 и 2 каждый. Докажите, что число треугольников чётно.

В ряд выписаны действительные числа <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, <i>a</i><sub>3</sub>, ..., <i>a</i><sub>1996</sub>. Докажите, что можно выделить одно или несколько стоящих рядом чисел так, что их сумма будет отличаться от целого числа меньше, чем на 0,001.

Дано <i>n</i> чисел, <i>p</i> – их произведение. Разность между <i>p</i> и каждым из этих чисел – нечётное число. Докажите, что все данные <i>n</i> чисел иррациональны.

{<i>a<sub>n</sub></i>} – последовательность чисел между 0 и 1, в которой следом за <i>x</i> идёт  1 – |1 – 2<i>x</i>|.

  а) Докажите, что если <i>a</i><sub>1</sub> рационально, то последовательность, начиная с некоторого места, периодическая.

  б) Докажите, что если последовательность, начиная с некоторого места, периодическая, то <i>a</i><sub>1</sub> рационально.

Бесконечная последовательность чисел <i>x<sub>n</sub></i> определяется условиями:  <i>x</i><sub><i>n</i>+1</sub> = 1 – |1 – 2<i>x<sub>n</sub></i>|,  причём  0 ≤ <i>x</i><sub>1</sub> ≤ 1.

  а) Докажите, что последовательность, начиная с некоторого места, периодическая в том и только в том случае, когда <i>x</i><sub>1</sub> рационально.

  б) Сколько существует значений <i>x</i><sub>1</sub>, для которых эта последовательность – периодическая с периодом <i>T</i> (для каждого <i>T</i> = 2, 3, ...)?

Числовая последовательность определяется условиями:   <img align="absmiddle" src="/storage/problem-media/98152/problem_98152_img_2.gif">  

Докажите, что среди членов этой последовательности бесконечно много полных квадратов.

 

Сколько существует таких пар натуральных чисел  (<i>m, n</i>),  каждое из которых не превышает 1000, что   <img align="absmiddle" src="/storage/problem-media/98049/problem_98049_img_2.gif">

Найти число решений в натуральных числах уравнения   [<sup><i>x</i></sup>/<sub>10</sub>] = [<sup><i>x</i></sup>/<sub>11</sub>] + 1.

Решить в натуральных числах уравнение:   <img align="absmiddle" src="/storage/problem-media/98024/problem_98024_img_2.gif">

Последовательность чисел  <i>x</i><sub>1</sub>, <i>x</i><sub>2</sub>, ...  такова, что  <i>x</i><sub>1</sub> = ½  и   <img align="absmiddle" src="/storage/problem-media/97884/problem_97884_img_2.gif">   для всякого натурального <i>k</i>.

Найдите целую часть суммы   <img align="absmiddle" src="/storage/problem-media/97884/problem_97884_img_3.gif">

Найдите все значения <i>а</i>, для которых выражения   <i>а</i> + <img align="absmiddle" src="/storage/problem-media/86505/problem_86505_img_2.gif">   и   <sup>1</sup>/<sub><i>а</i></sub> – <img align="absmiddle" src="/storage/problem-media/86505/problem_86505_img_2.gif">   принимают целые значения.

Дано число<i>x</i>, большее 1. Обязательно ли имеет место равенство<div align="CENTER"> [$\displaystyle \sqrt{[\sqrt{x}]}$] = [$\displaystyle \sqrt{\sqrt{x}}$]? </div>

Число 4 обладает тем свойством, что при делении его на <i>q</i>² остаток получается меньше <sup><i>q</i>²</sup>/<sub>2</sub>, каково бы ни было <i>q</i>.

Перечислить все числа, обладающие этим свойством.

Для любых натуральных чисел <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, ..., <i>a<sub>m</sub></i>, никакие два из которых не равны друг другу и ни одно из которых не делится на квадрат натурального числа, большего единицы, а также для любых целых и отличных от нуля целых чисел <i>b</i><sub>1</sub>, <i>b</i><sub>2</sub>, ..., <i>b<sub>m</sub></i> сумма   <img align="absmiddle" src="/storage/problem-media/73620/problem_73620_img_2.gif">   не равна нулю. Докажите это.

Существует ли такое положительное число $x > 1$, что $${x} > {x^2} > {x^3} > \ldots > {x^{100}}?$$ (Здесь ${x}$ — дробная часть числа $x$, то есть разность между $x$ и ближайшим целым числом, не превосходящим $x$.)

На доску записали числа $1$, $2$, ..., $100$. Далее за ход стирают любые два числа $a$ и $b$, где $a\geqslant b>0$, и пишут вместо них одно число $[a/b]$. После $99$ ходов на доске останется одно число. Каким наибольшим оно может быть? (Напомним, что $[x]$ — это наибольшее целое число, не превосходящее $x$.)

На часах три стрелки, каждая вращается в ту же сторону, что и обычно, с постоянной ненулевой, но, возможно, неправильной скоростью. Утром длинная и короткая стрелки совпали. Ровно через 3 часа совпали длинная и средняя стрелки. Еще ровно через 4 часа совпали короткая и средняя стрелки. Обязательно ли когда-нибудь совпадут все три стрелки?

На каждой из 99 карточек написано действительное число. Все 99 чисел различны, а их общая сумма иррациональна. Стопка из 99 карточек называется<i>неудачной</i>, если для каждого натурального $k$ от 1 до 99 сумма чисел на верхних $k$ карточках иррациональна. Петя вычислил, сколькими способами можно сложить исходные карточки в неудачную стопку. Какое наименьшее значение он мог получить?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка