Олимпиадные задачи по теме «Треугольник Паскаля и бином Ньютона» для 10 класса
Треугольник Паскаля и бином Ньютона
НазадНа какую наибольшую степень двойки делится число 10<sup>20</sup> – 2<sup>20</sup>?
Даны положительные числа <i>b</i> и <i>c</i>. Докажите неравенство (<i>b</i> – <i>c</i>)<sup>2011</sup>(<i>b</i> + <i>c</i>)<sup>2011</sup>(<i>c</i> – <i>b</i>)<sup>2011</sup> ≥ (<i>b</i><sup>2011</sup> – <i>c</i><sup>2011</sup>)(<i>b</i><sup>2011</sup> + <i>c</i><sup>2011</sup>)(<i>c</i><sup>2011</sup> – <i>b</i><sup>2011</sup>).
Для каждого простого <i>p</i> найдите наибольшую натуральную степень числа <i>p</i>!, на которую делится число (<i>p</i>²)!.
Докажите, что при любых натуральных 0 <<i>k</i><<i>m < n</i> числа <img align="absmiddle" src="/storage/problem-media/111922/problem_111922_img_2.gif"> и <img align="absmiddle" src="/storage/problem-media/111922/problem_111922_img_3.gif"> не взаимно просты.
Назовём усложнением числа приписывание к нему одной цифры в начало, в конец или между любыми двумя его цифрами. Существует ли натуральное число, из которого невозможно получить полный квадрат с помощью ста усложнений?
Докажите неравенство sin<sup><i>n</i></sup>2<i>x</i> + (sin<i><sup>n</sup>x</i> – cos<i><sup>n</sup>x</i>)² ≤ 1.
Докажите равенство <img align="absmiddle" src="/storage/problem-media/109154/problem_109154_img_2.gif">
Доказать, что <img src="/storage/problem-media/109151/problem_109151_img_2.gif"> <div align="center"><img src="/storage/problem-media/109151/problem_109151_img_3.gif"></div>
Решите в натуральных числах уравнение (1 + <i>n<sup>k</sup></i>)<sup><i>l</i></sup> = 1 + <i>n<sup>m</sup></i>, где <i>l</i> > 1.
Существуют ли такие иррациональные числа <i>a</i> и <i>b</i>, что <i>a </i> > 1, <i>b</i> > 1, и [<i>a<sup>m</sup></i>] отлично от [<i>b<sup>n</sup></i>] при любых натуральных числах <i>m</i> и <i>n</i>?
Рассматривается числовой треугольник: <div align="center"><img src="/storage/problem-media/98176/problem_98176_img_2.gif"></div>(первая строчка задана, а каждый элемент остальных строчек вычисляется как разность двух элементов, которые стоят над ним). В 1993-й строчке – один элемент. Найдите его.
Каких нечётных натуральных чисел <i>n</i> < 10000 больше: тех, для которых число, образованное четырьмя последними цифрами числа <i>n</i><sup>9</sup>, больше <i>n</i>, или тех, для которых оно меньше <i>n</i>?
Доказать, что не существует таких натуральных чисел <i>x, y, z, k</i>, что <i>x<sup>k</sup> + y<sup>k</sup> = z<sup>k</sup></i> при условии <i>x < k, y < k</i>.
Решить в натуральных числах уравнение <i>x</i><sup>2<i>y</i></sup> + (<i>x</i> + 1)<sup>2<i>y</i></sup> = (<i>x</i> + 2)<sup>2<i>y</i></sup>.
Докажите, что 2<sup><i>n</i></sup> > (1 – <i>x</i>)<sup><i>n</i></sup> + (1 + <i>x</i>)<sup><i>n</i></sup> при целом <i>n</i> ≥ 2 и |<i>x</i>| < 1.
В числовом треугольнике <div align="center"><img src="/storage/problem-media/76551/problem_76551_img_2.gif"></div>каждое число равно сумме чисел, расположенных в предыдущей строке над этим числом и над его соседями справа и слева (отсутствующие числа считаются равными нулю). Докажите, что в каждой строке, начиная с третьей, найдутся чётные числа.
Для любого натурального числа <i>n</i> сумма <img align="absmiddle" src="/storage/problem-media/73773/problem_73773_img_2.gif"> делится <nobr>на 2<sup><i>n</i>–1</sup>. Докажите это. </nobr>
а) Докажите, что <img align="absmiddle" src="/storage/problem-media/73734/problem_73734_img_2.gif"> (сумма берётся по всем целым <i>i</i>, 0 ≤ <i>i ≤ <sup>n</sup></i>/<sub>2</sub>). б) Докажите, что если <i>p</i> и <i>q</i> – различные числа и <i>p + q</i> = 1, то <div align="center"><img src="/storage/problem-media/73734/problem_73734_img_3.gif"></div>
Докажите, что для любого натурального числа <i>n</i> <img align="absmiddle" src="/storage/problem-media/73719/problem_73719_img_2.gif">
Последовательность <i>x</i><sub>0</sub>, <i>x</i><sub>1</sub>, <i>x</i><sub>2</sub>, ... определена следующими условиями: <i>x</i><sub>0</sub> = 1, <i>x</i><sub>1</sub> = λ, для любого <i>n</i> > 1 выполнено равенство <div align="center">(α + β)<i><sup>n</sup>x<sub>n</sub></i> = α<i><sup>n</sup>x<sub>n</sub>x</i><sub>0</sub> + α<sup><i>n</i>–1</sup>β<i>x</i><sub><i>n</i>–1</sub><i>x</i><sub>1</sub> + α<sup><i>n</i>–2</sup>β<sup>2</sup>...
<i>m</i> и <i>n</i> – натуральные числа, <i>m</i> < <i>n</i>. Докажите, что <img align="absmiddle" src="/storage/problem-media/73673/problem_73673_img_2.gif">
Каждое неотрицательное целое число представимо, причём единственным образом, в виде <img align="absmiddle" src="/storage/problem-media/73613/problem_73613_img_2.gif"> где <i>x</i> и <i>y</i> – целые неотрицательные числа. Докажите это.
Изначально на стол кладут 100 карточек, на каждой из которых записано по натуральному числу; при этом среди них ровно 28 карточек с нечётными числами. Затем каждую минуту проводится следующая процедура. Для каждых 12 карточек, лежащих на столе, вычисляется произведение записанных на них чисел, все эти произведения складываются, и полученное число записывается на новую карточку, которая добавляется к лежащим на столе. Можно ли выбрать исходные 100 чисел так, что для любого натурального <i>d</i> на столе рано или поздно появится карточка с числом, кратным 2<sup><i>d</i></sup>?
Изначально на стол положили 100 карточек, на каждой из которых записано по натуральному числу; при этом было ровно 43 карточки с нечётными числами. Затем каждую минуту проводилась следующая процедура. Для каждых трёх карточек, лежащих на столе, вычислялось произведение записанных на них чисел, все эти произведения складывались, и полученное число записывалось на новую карточку, которая добавлялась к лежащим на столе. Через год после начала процесса выяснилось, что на столе есть карточка с числом, кратным 2<sup>10000</sup>. Докажите, что число, кратное 2<sup>10000</sup>, было на одной из карточек уже через день после начала.
Вася купил <i>n</i> пар одинаковых носков. В течение <i>n</i> дней Вася не знал проблем: каждое утро брал из шкафа новую пару и носил её целый день. Через <i>n</i> дней Васина мама постирала все носки в стиральной машине и разложила их по парам, как получилось, поскольку, повторим, носки одинаковые. Назовём пару носков <i>удачной</i>, если оба носка в этой паре были на Васе в один и тот же день.
а) Найти вероятность того, что все получившиеся пары удачные.
б) Доказать, что матожидание числа удачных пар больше 0,5.