Олимпиадные задачи по теме «Геометрия» для 9 класса - сложность 1-2 с решениями

Точка <i>А</i> лежит на окружности верхнего основания прямого кругового цилиндра (см. рис.), <i>В</i> – наиболее удалённая от неё точка на окружности нижнего основания, <i>С</i> – произвольная точка окружности нижнего основания. Найдите <i>АВ</i>, если  <i>АС</i> = 12,  <i>BC</i> = 5. <div align="center"><img src="/storage/problem-media/116998/problem_116998_img_2.gif"></div>

Отмечены вершины и середины сторон правильного десятиугольника (то есть всего отмечено 20 точек).

Сколько существует треугольников с вершинами в отмеченных точках?

Центр <i>О</i> окружности, описанной около четырёхугольника <i>АВСD</i>, лежит внутри него. Найдите площадь четырёхугольника, если  ∠<i>ВАО</i> = ∠<i>DAC,

AC = m,  BD = n</i>.

Можно ли расположить на плоскости три вектора так, чтобы модуль суммы каждых двух из них был равен 1, а сумма всех трёх была равна нулевому вектору?

В остроугольном треугольнике <i>ABC</i> проведены высоты <i>AA</i><sub>1</sub> и <i>CC</i><sub>1</sub>. Описанная окружность Ω треугольника <i>ABC</i> пересекает прямую <i>A</i><sub>1</sub><i>C</i><sub>1</sub> в точках <i>A'</i> и <i>C'</i>. Касательные к Ω, проведённые в точках <i>A'</i> и <i>C'</i>, пересекаются в точке <i>B'</i>. Докажите, что прямая <i>BB'</i> проходит через центр окружности Ω.

Можно ли разбить клетчатую доску 12×12 на уголки из трёх соседних клеток так, чтобы каждый горизонтальный и каждый вертикальный ряд клеток доски пересекал одно и то же количество уголков? (Ряд пересекает уголок, если содержит хотя бы одну его клетку.)

Окружность, вписанная в прямоугольный треугольник <i>ABC</i> с гипотенузой <i>AB</i>, касается его сторон <i>BC, CA, AB</i> в точках <i>A</i><sub>1</sub>, <i>B</i><sub>1</sub>, <i>C</i><sub>1</sub> соответственно. Пусть <i>B</i><sub>1</sub><i>H</i> – высота треугольника <i>A</i><sub>1</sub><i>B</i><sub>1</sub><i>C</i><sub>1</sub>. Докажите, что точка <i>H</i> лежит на биссектрисе угла <i>CAB</i>.

Петя расставляет в вершинах куба числа 1 и –1. Андрей вычисляет произведение четырёх чисел, стоящих в вершинах каждой грани куба, и записывает его в центре этой грани. Петя утверждает, что он сможет так расставить числа, что их сумма и сумма чисел, записанных Андреем, будут противоположными. Прав ли Петя?

На сторонах <i>АВ, ВС</i> и <i>АС</i> равностороннего треугольника <i>АВС</i> выбраны точки <i>K, M</i> и <i>N</i> соответственно так, что угол <i>MKB</i> равен углу <i>MNC</i>, а угол <i>KMB</i> равен углу <i>KNA</i>. Докажите, что <i>NB</i> – биссектриса угла <i>MNK</i>.

В треугольнике <i>ABC</i> медиана, проведённая из вершины <i>A</i> к стороне <i>BC</i>, в четыре раза меньше стороны <i>AB</i> и образует с ней угол 60°. Найдите угол <i>А</i>.

В четырёхугольнике есть два прямых угла, а его диагонали равны. Верно ли, что он является прямоугольником?

На клетчатой бумаге нарисован квадрат 7×7. Покажите, как разрезать его по линиям сетки на шесть частей и сложить из них три квадрата.

Дан тетраэдр <i>ABCD</i>. Точка <i>X</i> выбрана вне тетраэдра так, что отрезок <i>XD</i> пересекает грань <i>ABC</i> во внутренней точке. Обозначим через <i>A', B', C'</i> проекции точки <i>D</i> на плоскости <i>XBC, XCA, XAB</i> соответственно. Докажите, что  <i>A'B' + B'C' + C'A' < DA + DB + DC</i>.

В окружность Ω вписан четырёхугольник <i>ABCD</i>, диагонали <i>AC</i> и <i>BD</i> которого перпендикулярны. На сторонах <i>AB</i> и <i>CD</i> во внешнюю сторону как на диаметрах построены дуги α и β. Рассмотрим две луночки, образованные окружностью Ω и дугами α и β (см. рис.). Докажите, что максимальные радиусы окружностей, вписанных в эти луночки, равны.<div align="center"><img src="/storage/problem-media/116915/problem_116915_img_2.gif"></div>

При каких <i>n</i> можно оклеить в один слой поверхность клетчатого куба <i>n</i>×<i>n</i>×<i>n</i> бумажными прямоугольниками 1×2 так, чтобы каждый прямоугольник граничил по отрезкам сторон ровно с пятью другими?

Дан равнобедренный треугольник <i>ABC</i>, в котором  <i>BC = a</i>,  <i>AB = AC = b</i>.  На стороне <i>AC</i> во внешнюю сторону построен треугольник <i>ADC</i>, в котором

<i>AD = DC = a</i>.  Пусть <i>CM</i> и <i>CN</i> – биссектрисы в треугольниках <i>ABC</i> и <i>ADC</i> соответственно. Найдите радиус описанной окружности треугольника <i>CMN</i>.

<i>ABC</i> – равнобедренный прямоугольный треугольник. На продолжении гипотенузы <i>AB</i> за точку <i>A</i> взята точка <i>D</i> так, что  <i>AB</i> = 2<i>AD</i>. Точки <i>M</i> и <i>N</i> на стороне <i>AC</i> таковы, что  <i>AM = NC</i>.  На продолжении стороны <i>CB</i> за точку <i>B</i> взята такая точка <i>K</i>, что  <i>CN = BK</i>.  Найдите угол между прямыми <i>NK</i> и <i>DM</i>.

В остроугольном треугольнике <i>ABC</i> провели высоты <i>AA</i><sub>1</sub> и <i>BB</i><sub>1</sub>, которые пересекаются в точке <i>O</i>. Затем провели высоту <i>A</i><sub>1</sub><i>A</i><sub>2</sub> треугольника <i>OBA</i><sub>1</sub> и высоту <i>B</i><sub>1</sub><i>B</i><sub>2</sub> треугольника <i>OAB</i><sub>1</sub>. Докажите, что отрезок <i>A</i><sub>2</sub><i>B</i><sub>2</sub> параллелен стороне <i>AB</i>.

Существует ли такие выпуклый четырёхугольник и точка <i>P</i> внутри него, что сумма расстояний от <i>P</i> до вершин больше периметра четырёхугольника?

В треугольнике <i>ABC</i> провели биссектрисы <i>BB'</i> и <i>CC'</i>, а затем стёрли весь рисунок, кроме точек <i>A, B'</i> и <i>C'</i>.

Восстановите треугольник <i>ABC</i> при помощи циркуля и линейки.

Точка <i>M</i> – середина основания <i>AC</i> остроугольного равнобедренного треугольника <i>ABC</i>. Точка <i>N</i> симметрична <i>M</i> относительно <i>BC</i>. Прямая, параллельная <i>AC</i> и проходящая через точку <i>N</i>, пересекает сторону <i>AB</i> в точке <i>K</i>. Найдите угол <i>AKC</i>.

На сторонах <i>AB</i> и <i>BC</i> равностороннего треугольника <i>ABC</i> отмечены точки <i>L</i> и <i>K</i> соответственно, <i>M</i> – точка пересечения отрезков <i>AK</i> и <i>CL</i>. Известно, что площадь треугольника <i>AMC</i> равна площади четырёхугольника <i>LBKM</i>. Найдите угол <i>AMC</i>.

Точка <i>K</i> – середина гипотенузы <i>АВ</i> прямоугольного треугольника <i>АВС</i>. На катетах <i>АС</i> и <i>ВС</i> выбраны точки <i>М</i> и <i>N</i> соответственно так, что угол <i>МKN</i> – прямой. Докажите, что из отрезков <i>АМ, ВN</i> и <i>MN</i> можно составить прямоугольный треугольник.

В трапеции <i>ABCD</i> основание <i>BC</i> в два раза меньше основания <i>AD</i>. Из вершины <i>D</i> опущен перпендикуляр <i>DE</i> на сторону <i>AB</i>. Докажите, что  <i>СЕ = CD</i>.

Через концы основания <i>BC</i> трапеции <i>ABCD</i> провели окружность, которая пересекла боковые стороны <i>AB</i> и <i>CD</i> в точках <i>M</i> и <i>N</i> соответственно. Известно, что точка <i>T</i> пересечения отрезков <i>AN</i> и <i>DM</i> также лежит на этой окружности. Докажите, что  <i>TB</i> = <i>TC</i>.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка