Олимпиадные задачи по математике
Пусть <i>M</i> и <i>I</i> – точки пересечения медиан и биссектрис неравнобедренного треугольника <i>ABC</i>, а <i>r</i> – радиус вписанной в него окружности.
Докажите, что <i>MI</i> = <sup><i>r</i></sup>/<sub>3</sub> тогда и только тогда, когда прямая <i>MI</i> перпендикулярна одной из сторон треугольника.
В треугольнике <i>ABC</i> провели биссектрисы <i>BB'</i> и <i>CC'</i>, а затем стёрли весь рисунок, кроме точек <i>A, B'</i> и <i>C'</i>.
Восстановите треугольник <i>ABC</i> при помощи циркуля и линейки.
Пусть <i>K</i> – точка на стороне <i>BC</i> треугольника <i>ABC</i>, <i>KN</i> – биссектриса треугольника <i>AKC</i>. Прямые <i>BN</i> и <i>AK</i> пересекаются в точке <i>F</i>, а прямые <i>CF</i> и <i>AB</i> – в точке <i>D</i>. Докажите, что <i>KD</i> – биссектриса треугольника <i>AKB</i>.
Восстановите равнобедренный треугольник <i>ABC</i> (<i>AB = AC</i>) по точкам <i>I, M, H</i> пересечения биссектрис, медиан и высот соответственно.
Восстановите треугольник <i>ABC</i> по прямым <i>l<sub>b</sub></i> и <i>l<sub>c</sub></i>, содержащим биссектрисы углов <i>B</i> и <i>C</i>, и основанию биссектрисы угла <i>A</i> – точке <i>L</i><sub>1</sub>.
Пусть <i>X</i> – такая точка внутри треугольника <i>ABC</i>, что <i>XA·BC = XB·AC = XC·AB</i>; <i>I</i><sub>1</sub>, <i>I</i><sub>2</sub>, <i>I</i><sub>3</sub> – центры вписанных окружностей треугольников <i>XBC, XCA</i> и <i>XAB</i> соответственно. Докажите, что прямые <i>AI</i><sub>1</sub>, <i>BI</i><sub>2</sub> и <i>CI</i><sub>3</sub> пересекаются в одной точке.
Пусть <i>O</i> – одна из точек пересечения окружностей ω<sub>1</sub> и ω<sub>2</sub>. Окружность ω с центром <i>O</i> пересекает ω<sub>1</sub> в точках <i>A</i> и <i>B</i>, а ω<sub>2</sub> – в точках <i>C</i> и <i>D</i>. Пусть <i>X</i> – точка пересечения прямых <i>AC</i> и <i>BD</i>. Докажите, что все такие точки <i>X</i> лежат на одной прямой.