Олимпиадные задачи по теме «Тригонометрия» для 8-9 класса - сложность 3-5 с решениями

Даны различные натуральные числа <i>a</i>, <i>b</i>. На координатной плоскости нарисованы графики функций  <i>y</i> = sin <i>ax</i>,  <i>y</i> = sin <i>bx</i>  и отмечены все точки их пересечения. Докажите, что существует натуральное число <i>c</i>, отличное от <i>a</i>, <i>b</i> и такое, что график функции  <i>y</i> = sin <i>cx</i>  проходит через все отмеченные точки.

Дан треугольник <i>ABC, AA</i><sub>1</sub>, <i>BB</i><sub>1</sub> и <i>CC</i><sub>1</sub> – его биссектрисы. Известно, что величины углов <i>A, B</i> и <i>C</i> относятся как  4 : 2 : 1.  Докажите, что  <i>A</i><sub>1</sub><i>B</i><sub>1</sub> = <i>A</i><sub>1</sub><i>C</i><sub>1</sub>.

Докажите, что при<i> k></i>10в произведении <center><i>

f</i>(<i>x</i>)<i> = cos x cos </i>2<i>x cos </i>3<i>x .. cos </i>2<i><sup>k</sup> x

</i></center> можно заменить один<i> cos </i>на<i> sin </i>так, что получится функция<i> f<sub>1</sub></i>(<i>x</i>), удовлетворяющая при всех действительных<i> x </i>неравенству<i> |f<sub>1</sub></i>(<i>x</i>)<i>|<img src="/storage/problem-media/111826/problem_111826_img_2.gif"> <img src="/storage/problem-media/111826/problem_111826_img_3.gif"> </i>.

Докажите, что если<i> α </i>,<i> β </i>и<i> γ </i>– углы остроугольного треугольника, то<i> sinα + sinβ + sinγ > </i>2.

Докажите, что для каждого<i> x </i>такого, что<i> sin x<img src="/storage/problem-media/110210/problem_110210_img_2.gif"> </i>0, найдется такое натуральное<i> n </i>, что<i> | sin nx| <img src="/storage/problem-media/110210/problem_110210_img_3.gif"> <img src="/storage/problem-media/110210/problem_110210_img_4.gif"> </i>.

Каждую вершину выпуклого четырехугольника площади<i> S </i>отразили симметрично относительно диагонали, не содержащей эту вершину. Обозначим площадь получившегося четырехугольника через<i> S' </i>. Докажите, что<i> <img src="/storage/problem-media/110176/problem_110176_img_2.gif"><</i>3.

Найдите все углы<i> α </i>, для которых набор чисел<i> sinα </i>,<i> sin</i>2<i>α </i>,<i> sin</i>3<i>α </i>совпадает с набором<i> cosα </i>,<i> cos</i>2<i>α </i>,<i> cos</i>3<i>α </i>.

Пусть<i> f</i>(<i>x</i>)<i>=x<sup>2</sup>+ax+b cos x </i>. Найдите все значения параметров<i> a </i>и<i> b </i>, при которых уравнения<i> f</i>(<i>x</i>)<i>=</i>0и<i> f</i>(<i>f</i>(<i>x</i>))<i>=</i>0имеют совпадающие непустые множества действительных корней.

Доказать, что каковы бы ни были числа <i>a, b, c</i>, по крайней мере одно из уравнений

    <i>a</i> sin <i>x + b</i> cos <i>x + c</i> = 0,   2<i>a</i> tg <i>x + b</i> ctg <i>x</i> + 2<i>c</i> = 0

имеет решение.

Доказать, что сумма<i> cos α+ cos</i>(72<i><sup>o</sup>+α</i>)<i>+ cos</i>(144<i><sup>o</sup>+α</i>)<i>+ cos</i>(216<i><sup>o</sup>+α</i>)<i>+ cos</i>(288<i><sup>o</sup>+α</i>)не зависит от<i> α </i>.

Из условия<i> tgϕ=</i>1/<i> cosα cosβ+ tgα tgβ </i>вывести, что<i> cos </i>2<i>ϕ<img src="/storage/problem-media/109155/problem_109155_img_2.gif"> </i>0.

Сколько корней имеет уравнение<i> sin x=x/</i>100?

Показать, что<i> sin </i>36<i><sup>o</sup>=</i>1/4<i><img src="/storage/problem-media/109145/problem_109145_img_2.gif"> </i>.

Докажите следующие равенства: а)   <img align="middle" src="/storage/problem-media/85241/problem_85241_img_2.gif">

б)   <img align="middle" src="/storage/problem-media/85241/problem_85241_img_3.gif">

в)   <img align="middle" src="/storage/problem-media/85241/problem_85241_img_4.gif">

Докажите, что если сумма косинусов углов четырёхугольника равна нулю, то он — параллелограмм, трапеция или вписанный четырёхугольник.

Некоторые из чисел<i>a</i><sub>1</sub>,<i>a</i><sub>2</sub>,...<i>a</i><sub>n</sub>равны +1, остальные равны -1. Доказать, что<div align="CENTER"> <table> <tr valign="MIDDLE"><td align="LEFT">2 sin$\displaystyle \left(\vphantom{ a_1+\frac{a_1a_2}{2}+\frac{a_1a_2a_3}{4}+\dots +\frac{a_1a_2\cdot\ldots\cdot a_n}{2^{n-1}}}\right.$<i>a</i><sub>1</sub> + $\displaystyle {\frac{a_1a_2}{2}}$ + $\displaystyle {\frac{a_1a_2a_3}{4}}$ + ... + $\displaystyle {\frac{a_1a_2\cdot\ldots\cdot a_n}{2^{n-1}}}$$\displaystyle \left.\vphantom{ a_1+\frac{a_1a_2}{2}+\frac{a_1a_2a_3}{4}+\dots +\frac{a_1a_2\cdot\ldots\cdot a_n}{2^{n-1}}}\right)$$\displaystyle {\frac{\pi...

Доказать, что  cos <sup>2π</sup>/<sub>5</sub> + cos <sup>4π</sup>/<sub>5</sub> = – ½.

а) На плоскости лежит правильный восьмиугольник. Его разрешено "перекатывать" по плоскости, переворачивая (симметрично отражая) относительно любой стороны. Докажите, что для любого круга можно перекатить восьмиугольник в такое положение, что его центр окажется внутри круга.

б) Решите аналогичную задачу для правильного пятиугольника.

в) Для каких правильных <i>n</i>-угольников верно аналогичное утверждение?

Для любого треугольника можно вычислить сумму квадратов тангенсов половин его углов. Докажите, что эта сумма

  а) меньше 2 для любого остроугольного треугольника;

  б) не меньше 2 для любого тупоугольного треугольника, величина тупого угла которого больше или равна  2 arctg <sup>4</sup>/<sub>3</sub>;  а среди треугольников с тупым углом, меньшим  2 arctg <sup>4</sup>/<sub>3</sub>,  имеются и такие, сумма квадратов тангенсов половин углов которых больше 2, и такие, сумма квадратов тангенсов половин углов которых меньше 2.

Сумма тангенсов углов величиной 1°, 5°, 9°, 13°, ..., 173°, 177°<nobr>равна 45.</nobr>Докажите это.

<img align="RIGHT" src="/storage/problem-media/73564/problem_73564_img_2.gif"><i>n</i>одинаковых монет лежат на столе, образуя замкнутую цепочку. Центры монет образуют выпуклый многоугольник. Сколько оборотов сделает монета такого же размера за время, пока она один раз прокатится по внешней стороне всей цепочки, как показано на рисунке?Как изменится ответ, если радиус этой монеты в <nobr><i>k</i> раз</nobr> больше радиуса каждой из монет цепочки?

При помощи преобразования Абеля вычислите следующие суммы: а)$\sum\limits_{k=1}^{n}$<i>k</i><sup>2</sup><i>q</i><sup>k - 1</sup>; б)$\sum\limits_{k=1}^{n}$<i>k</i>sin <i>kx</i>; в)$\sum\limits_{k=1}^{n}$<i>k</i><sup>2</sup>cos <i>kx</i>.

Числа<i>x</i>,<i>y</i>и<i>z</i>удовлетворяют соотношению<i>xy</i>+<i>yz</i>+<i>xz</i>= 1. Докажите, что существуют числа$\alpha$,$\beta$,$\gamma$такие, что$\alpha$+$\beta$+$\gamma$=$\pi$и выполняются равенства<div align="CENTER"> <i>x</i> = <i>tg</i> $\displaystyle {\dfrac{\alpha}{2}}$,<i>y</i> = <i>tg</i> $\displaystyle {\dfrac{\beta}{2}}$, <i>z</i> = <i>tg</i> $\displaystyle {\dfrac{\gamma}{2}}$. </div>

а) Докажите, что при  4<i>p</i>³ + 27<i>q</i>² < 0  уравнение  <i>x</i>³ + <i>px + q</i> = 0  заменой  <i>x</i> = α<i>y</i> + β  сводится к уравнению <i>ay</i>³ – 3<i>by</i>² – 3<i>ay + b</i> = 0    () от переменной <i>y</i>. б) Докажите, что решениями уравнения () будут числа   <i>y</i><sub>1</sub> = tg <img width="18" height="43" align="MIDDLE" border="0" src="/storage/problem-media/61279/problem_61279_img_2.gif">,   <i>y</i><sub>2</sub> = tg <img width="55" height="49" align="MIDDLE" border="0" src="/storage/probl...

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка