Олимпиадные задачи по математике для 8 класса - сложность 2-3 с решениями
Через вершины <i>A, B, C</i> треугольника <i>ABC</i> проведены три параллельные прямые, пересекающие вторично его описанную окружность в точках <i>A</i><sub>1</sub>, <i>B</i><sub>1</sub>, <i>C</i><sub>1</sub> соответственно. Точки <i>A</i><sub>2</sub>, <i>B</i><sub>2</sub>, <i>C</i><sub>2</sub> симметричны точкам <i>A</i><sub>1</sub>, <i>B</i><sub>1</sub>, <i>C</i><sub>1</sub> относительно сторон <i>BC, CA, AB</i> соответственно. Докажите, что прямые <i>AA</i><sub>2</sub>, <i>BB</i><sub>2</sub>,...
Квадрат разрезан на несколько (больше одного) выпуклых многоугольников с попарно различным числом сторон.
Докажите, что среди них есть треугольник.
Восстановите треугольник с помощью циркуля и линейки по точке пересечения высот и основаниям медианы и биссектрисы, проведённых к одной из сторон.
Два муравья проползли каждый по своему замкнутому маршруту на доске 7×7. Каждый полз только по сторонам клеток доски и побывал в каждой из 64 вершин клеток ровно один раз. Каково наименьшее возможное число таких сторон, по которым проползали и первый, и второй муравьи?
B остроугольном треугольнике ровно один из углов равен 60°. Докажите, что прямая, проходящая через центр описанной окружности и точку пересечения медиан треугольника, отсекает от него равносторонний треугольник.
Hа сторонах треугольника <i>ABC</i> во внешнюю сторону построены правильные треугольники <i>ABC</i><sub>1</sub>, <i>BCA</i><sub>1</sub>, <i>CAB</i><sub>1</sub>. Hа отрезке <i>A</i><sub>1</sub><i>B</i><sub>1</sub> во внешнюю сторону треугольника <i>A</i><sub>1</sub><i>B</i><sub>1</sub><i>C</i><sub>1</sub> построен правильный треугольник <i>A</i><sub>1</sub><i>B</i><sub>1</sub><i>C</i><sub>2</sub>. Докажите, что <i>C</i> – середина отрезка <i>C</i><sub>1</sub><i>C</i><...
Диагонали вписанного четырехугольника <i>ABCD</i> пересекаются в точке <i>K</i>.
Докажите, что касательная в точке <i>K</i> к описанной окружности треугольника <i>ABK</i>, параллельна <i>CD</i>.
Пусть <i>A</i><sub>1</sub>, <i>B</i><sub>1</sub>, <i>C</i><sub>1</sub> – середины сторон треугольника <i>ABC, I</i> – центр вписанной в него окружности, <i>C</i><sub>2</sub> – точка пересечения прямых <i>C</i><sub>1</sub><i>I</i> и <i>A</i><sub>1</sub><i>B</i><sub>1</sub>, <i>C</i><sub>3</sub> – точка пересечения прямых <i>CC</i><sub>2</sub> и <i>AB</i>. Докажите, что прямая <i>IC</i><sub>3</sub> перпендикулярна прямой <i>AB</i>.
В окружность вписан треугольник <i>ABC</i>. Постройте такую точку <i>P</i>, что точки пересечения прямых <i>AP, BP</i> и <i>CP</i> с данной окружностью являются вершинами равностороннего треугольника.
Bнутри окружности зафиксирована точка <i>P</i>. <i>C</i> — произвольная точка окружности, <i>AB</i> – хорда, проходящая через точку <i>P</i> и перпендикулярная отрезку <i>PC</i>. Tочки <i>X</i> и <i>Y</i> являются проекциями точки <i>P</i> на прямые <i>AC</i> и <i>BC</i>. Докажите, что все отрезки <i>XY</i> касаются одной и той же окружности.
Дан треугольник <i>ABC</i>. Tочки <i>A</i><sub>1</sub>, <i>B</i><sub>1</sub> и <i>C</i><sub>1</sub> симметричны его вершинам относительно противоположных сторон. <i>C</i><sub>2</sub> – точка пересечения прямых <i>AB</i><sub>1</sub> и <i>BA</i><sub>1</sub>, точки <i>A</i><sub>2</sub> и <i>B</i><sub>2</sub> определяются аналогично. Докажите, что прямые <i>A</i><sub>1</sub><i>A</i><sub>2</sub>, <i>B</i><sub>1</sub><i>B</i><sub>2</sub> и <i>C</i><sub>1</sub><i>C</i&...
Bосстановите остроугольный треугольник по ортоцентру и серединам двух сторон.
Дан вписанный четырёхугольник <i>ABCD</i>. Известно, что четыре окружности, каждая из которых касается его диагоналей и описанной окружности изнутри, равны. Верно ли, что <i>ABCD</i> – квадрат?
Три прямые проходят через точку <i>O</i> и образуют попарно равные углы. На одной из них взяты точки <i>A</i><sub>1</sub>, <i>A</i><sub>2</sub>, на другой – <i>B</i><sub>1</sub>, <i>B</i><sub>2</sub>, так что точка <i>C</i><sub>1</sub> пересечения прямых <i>A</i><sub>1</sub><i>B</i><sub>1</sub> и <i>A</i><sub>2</sub><i>B</i><sub>2</sub> лежит на третьей прямой. Пусть <i>C</i><sub>2</sub> – точка пересечения <i>A</i><sub>1</sub><i>B</i><sub>2</sub> и <i>A</i><sub>2</sub>&l...
В треугольнике <i>ABC</i> отметили центр вписанной окружности, основание высоты, опущенной на сторону <i>AB</i>, и центр вневписанной окружности, касающейся этой стороны и продолжений двух других. После этого сам треугольник стёрли. Восстановите его.
В треугольнике <i>ABC M</i> – точка пересечения медиан, <i>I</i> – центр вписанной окружности, <i>A</i><sub>1</sub> и <i>B</i><sub>1</sub> – точки касания этой окружности со сторонами <i>BC</i> и <i>AC, G</i> – точка пересечения прямых <i>AA</i><sub>1</sub> и <i>BB</i><sub>1</sub>. Докажите, что угол <i>CGI</i> прямой тогда и только тогда, когда <i>GM || AB</i>.
Радиусы описанной и вписанной окружностей треугольника <i>ABC</i> равны <i>R</i> и <i>r</i>; <i>O, I</i> – центры этих окружностей. Внешняя биссектриса угла <i>C</i> пересекает прямую <i>AB</i> в точке <i>P</i>. Точка <i>Q</i> – проекция точки <i>P</i> на прямую <i>OI</i>. Найдите расстояние <i>OQ</i>.
В трапеции <i>ABCD</i> с основаниями <i>AD</i> и <i>BC</i> <i>P</i> и <i>Q</i> – середины диагоналей <i>AC</i> и <i>BD</i> соответственно. Докажите, что если ∠<i>DAQ</i> = ∠<i>CAB</i>, то ∠<i>PBA</i> = ∠<i>DBC</i>.
На стороне <i>AB</i> треугольника <i>ABC</i> взяты такие точки <i>X</i>, <i>Y</i>, что <i>AX = BY</i>. Прямые <i>CX</i> и <i>CY</i> вторично пересекают описанную окружность треугольника в точках <i>U</i> и <i>V</i>. Докажите, что все прямые <i>UV</i> проходят через одну точку.
Дан прямоугольник <i>ABCD</i> и точка <i>P</i>. Прямые, проходящие через <i>A</i> и <i>B</i> и перпендикулярные, соответственно, <i>PC</i> и <i>PD</i>, пересекаются в точке <i>Q</i>.
Докажите, что <i>PQ</i> ⊥ <i>AB</i>.
Найдите геометрическое место центров правильных треугольников, стороны которых проходят через три заданные точки <i>A, B, C</i> (то есть на каждой стороне или ее продолжении лежит ровно одна из заданных точек).
Два выпуклых четырёхугольника таковы, что стороны каждого лежат на серединных перпендикулярах к сторонам другого. Найдите их углы.
Три окружности проходят через точку <i>P</i>, а вторые точки их пересечения <i>A, B, C</i> лежат на одной прямой. <i>A</i><sub>1</sub>, <i>B</i><sub>1</sub>, <i>C</i><sub>1</sub> – вторые точки пересечения прямых <i>AP, BP, CP</i> с соответствующими окружностями. <i>C</i><sub>2</sub> – точка пересечения прямых <i>AB</i><sub>1</sub> и <i>BA</i><sub>1</sub>. <i>A</i><sub>2</sub>, <i>B</i><sub>2</sub> определяются аналогично.
Докажите, что треугольники <i>A</i><sub>1</sub><i>B</i><sub>1</sub><i>C</i><sub...
Хорды <i>AC</i> и <i>BD</i> окружности пересекаются в точке <i>P</i>. Перпендикуляры к <i>AC</i> и <i>BD</i> в точках <i>C</i> и <i>D</i>, соответственно пересекаются в точке <i> Q </i>.
Докажите, что прямые <i>AB</i> и <i>PQ</i> перпендикулярны.
В неравнобедренном треугольнике две медианы равны двум высотам. Найдите отношение третьей медианы к третьей высоте.