Олимпиадные задачи по математике - сложность 1-5 с решениями

К двум непересекающимся окружностям ω<sub>1</sub> и ω<sub>2</sub> проведены три общие касательные – две внешние, <i>a</i> и <i>b</i>, и одна внутренняя, <i>c</i>. Прямые <i>a, b</i> и <i>c</i> касаются окружности ω<sub>1</sub> в точках <i>A</i><sub>1</sub>, <i>B</i><sub>1</sub> и <i>C</i><sub>1</sub> соответственно, а окружности ω<sub>2</sub> – в точках <i>A</i><sub>2</sub>, <i>B</i><sub>2</sub> и <i>C</i><sub>2</sub> соответственно. Докажите, что отношение площадей треугольников <i>A</i><sub>1</sub><i>B</i&gt...

В остроугольном треугольнике <i>ABC</i> проведены высоты <i>AA</i><sub>1</sub> и <i>CC</i><sub>1</sub>. Описанная окружность Ω треугольника <i>ABC</i> пересекает прямую <i>A</i><sub>1</sub><i>C</i><sub>1</sub> в точках <i>A'</i> и <i>C'</i>. Касательные к Ω, проведённые в точках <i>A'</i> и <i>C'</i>, пересекаются в точке <i>B'</i>. Докажите, что прямая <i>BB'</i> проходит через центр окружности Ω.

Серединный перпендикуляр к стороне <i>AC</i> неравнобедренного остроугольного треугольника <i>ABC</i> пересекает прямые <i>AB</i> и <i>BC</i> в точках <i>B</i><sub>1</sub> и <i>B</i><sub>2</sub> соответственно, а серединный перпендикуляр к стороне <i>AB</i> пересекает прямые <i>AC</i> и <i>BC</i> в точках <i>C</i><sub>1</sub> и <i>C</i><sub>2</sub> соответственно. Описанные окружности треугольников <i>BB</i><sub>1</sub><i>B</i><sub>2</sub> и <i>CC</i><sub>1</sub><i>C</i><sub>2</sub> пересекаются в точках <i>P&lt...

Точка <i>E</i> – середина отрезка, соединяющего ортоцентр неравнобедренного остроугольного треугольника <i>ABC</i> с его вершиной <i>A</i>. Вписанная окружность этого треугольника касается сторон <i>AB</i> и <i>AC</i> в точках <i>C'</i> и <i>B'</i> соответственно. Докажите, что точка <i>F</i>, симметричная точке <i>E</i> относительно прямой <i>B'C'</i>, лежит на прямой, проходящей через центры вписанной и описанной окружностей треугольника <i>ABC</i>.

Окружность ω, вписанная в остроугольный неравнобедренный треугольник <i>ABC</i>, касается стороны <i>BC</i> в точке <i>D</i>. Пусть точка <i>I</i> – центр окружности ω, а <i>O</i> – центр описанной окружности треугольника <i>ABC</i>. Описанная окружность треугольника <i>AID</i>, пересекает вторично прямую <i>AO</i> в точке <i>E</i>. Докажите, что длина отрезка <i>AE</i> равна радиусу окружности ω.

Дан остроугольный треугольник <i>ABC</i>. Окружность, проходящая через вершину <i>B</i> и центр <i>O</i> его описанной окружности, вторично пересекает стороны <i>BC</i> и <i>BA</i> в точках <i>P</i> и <i>Q</i> соответственно. Докажите, что ортоцентр треугольника <i>POQ</i> лежит на прямой <i>AC</i>.

Фокусник выкладывает 36 карт в виде квадрата 6×6 (в 6 столбцов по 6 карт) и просит Зрителя мысленно выбрать карту и запомнить столбец, её содержащий. После этого Фокусник определённым образом собирает карты, снова выкладывает в виде квадрата 6×6 и просит Зрителя назвать номера столбцов, содержащих выбранную карту в первый и второй раз. После ответа Зрителя Фокусник безошибочно отгадывает карту. Как действовать Фокуснику, чтобы фокус гарантированно удался?

Окружности ω<sub>1</sub> и ω<sub>2</sub> касаются внешним образом в точке <i>P</i>. Через центр ω<sub>1</sub> проведена прямая <i>l</i><sub>1</sub>, касающаяся ω<sub>2</sub>. Аналогично прямая <i>l</i><sub>2</sub> касается ω<sub>1</sub> и проходит через центр ω<sub>2</sub>. Оказалось, что прямые <i>l</i><sub>1</sub> и <i>l</i><sub>2</sub> непараллельны. Докажите, что точка <i>P</i> лежит на биссектрисе одного из углов, образованных <i>l</i><sub>1</sub> и <i>l</i><sub>2</sub>.

В неравнобедренном остроугольном треугольнике <i>ABC</i> точки <i>C</i><sub>0</sub> и <i>B</i><sub>0</sub> – середины сторон <i>AB</i> и <i>AC</i> соответственно, <i>O</i> – центр описанной окружности, <i>H</i> – точка пересечения высот. Прямые <i>BH</i> и <i>OC</i><sub>0</sub> пересекаются в точке <i>P</i>, а прямые <i>CH</i> и <i>OB</i><sub>0</sub> – в точке <i>Q</i>. Оказалось, что четырёхугольник <i>OPHQ</i> – ромб. Докажите, что точки <i>A, P</i> и <i>Q</i> лежат на одной прямой.

Про три положительных числа известно, что если выбрать одно из них и прибавить к нему сумму квадратов двух других, то получится одна и та же сумма, независимо от выбранного числа. Верно ли, что все числа равны?

Какие треугольники можно разрезать на три треугольника с равными радиусами описанных окружностей?

Разрежьте крест, составленный из пяти одинаковых квадратов, на три многоугольника, равных по площади и периметру.

В треугольнике <i> ABC </i>проведена биссектриса <i> BD </i>(точка <i> D </i>лежит на отрезке <i> AC </i>). Прямая <i> BD </i>пересекает окружность <i> Ω </i>, описанную около треугольника <i> ABC </i>, в точках <i> B </i>и <i> E </i>. Окружность <i> ω </i>, построенная на отрезке <i> DE </i>как на диаметре, пересекает окружность <i> Ω </i>в точках <i> E </i>и <i> F </i>. Докажите, что прямая, симметричная прямой <i> BF </i>относительно прямой <i> BD </i>, содержит медиану треугольника <i> ABC </i>.

На сторонах<i> AB </i>и<i> BC </i>параллелограмма<i> ABCD </i>выбраны точки<i> A<sub>1</sub> </i>и<i> C<sub>1</sub> </i>соответственно. Отрезки<i> AC<sub>1</sub> </i>и<i> CA<sub>1</sub> </i>пересекаются в точке<i> P </i>. Описанные окружности треугольников <i> AA<sub>1</sub>P </i>и<i> CC<sub>1</sub>P </i>вторично пересекаются в точке<i> Q </i>, лежащей внутри треугольника <i> ACD </i>. Докажите, что<i> <img align="absmiddle" src="/storage/problem-media/115402/problem_115402_img_2.gif"> PDA=<img align="absmiddle" src="/storage/...

Пусть точки<i> A </i>,<i> B </i>,<i> C </i>лежат на окружности, а прямая<i> b </i>касается этой окружности в точке<i> B </i>. Из точки<i> P </i>, лежащей на прямой<i> b </i>, опущены перпендикуляры<i> PA<sub>1</sub> </i>и<i> PC<sub>1</sub> </i>на прямые<i> AB </i>и<i> BC </i>соответственно (точки<i> A<sub>1</sub> </i>и<i> C<sub>1</sub> </i>лежат на отрезках<i> AB </i>и<i> BC </i>). Докажите, что<i> A<sub>1</sub>C<sub>1</sub> <img align="absmiddle" src="/storage/problem-media/115370/problem_115370_img_2.gif"> A...

Прямые, касающиеся окружности ω в точках <i>B</i> и <i>D</i>, пересекаются в точке <i>P</i>. Прямая, проходящая через <i>P</i>, высекает на окружности хорду <i>AC</i>. Через точку отрезка <i>AC</i> проведена прямая, параллельная <i>BD</i>. Докажите, что она делит длины ломаных <i>ABC</i> и <i>ADC</i> в одинаковых отношениях.

В неравнобедренном треугольнике <i>ABC</i> точки <i>H</i> и <i>M</i> – точки пересечения высот и медиан соответственно. Через вершины <i>A, B</i> и <i>C</i> проведены прямые, перпендикулярные прямым <i>AM, BM, CM</i> соответственно. Докажите, что точка пересечения медиан треугольника, образованного проведёнными прямыми, лежит на прямой <i>MH</i>.

На бесконечной в обе стороны ленте бумаги выписаны все целые числа, каждое – ровно по одному разу.

Могло ли оказаться, что между каждыми двумя числами не стоит их среднее арифметическое?

На стороне<i> BC </i>треугольника<i> ABC </i>выбрана произвольная точка<i> D </i>. В треугольники<i> ABD </i>и<i> ACD </i>вписаны окружности с центрами<i> K </i>и<i> L </i>соответственно. Докажите, что описанные окружности треугольников<i> BKD </i>и<i> CLD </i>вторично пересекаются на фиксированной окружности.

Точка<i> D </i>на стороне<i> BC </i>треугольника<i> ABC </i>такова, что радиусы вписанных окружностей треугольников<i> ABD </i>и<i> ACD </i>равны. Докажите, что радиусы окружностей, вневписанных в треугольники<i> ABD </i>и<i> ACD </i>, касающихся соответственно отрезков<i> BD </i>и<i> CD </i>, также равны.

При изготовлении партии из  <i>N</i> ≥ 5  монет работник по ошибке изготовил две монеты из другого материала (все монеты выглядят одинаково). Начальник знает, что таких монет ровно две, что они весят одинаково, но отличаются по весу от остальных. Работник знает, какие это монеты и что они легче остальных. Ему нужно, проведя два взвешивания на чашечных весах без гирь, убедить начальника в том, что фальшивые монеты легче настоящих, и в том, какие именно монеты фальшивые. Может ли он это сделать?

Медиану <i>AA</i><sub>0</sub> треугольника <i>ABC</i> отложили от точки <i>A</i><sub>0</sub> перпендикулярно стороне <i>BC</i> во внешнюю сторону треугольника. Обозначим второй конец построенного отрезка через <i>A</i><sub>1</sub>. Аналогично строятся точки <i>B</i><sub>1</sub> и <i>C</i><sub>1</sub>. Найдите углы треугольника <i>A</i><sub>1</sub><i>B</i><sub>1</sub><i>C</i><sub>1</sub>, если углы треугольника <i>ABC</i> равны 30°, 30° и 120°.

Каждая деталь конструктора "Юный паяльщик" – это скобка в виде буквы П, состоящая из трёх единичных отрезков. Можно ли из деталей этого конструктора спаять полный проволочный каркас куба 2×2×2, разбитого на кубики 1×1×1? (Каркас состоит из 27 точек, соединённых единичными отрезками; любые две соседние точки должны быть соединены ровно одним проволочным отрезком.)

Биссектрисы углов<i> A </i>и<i> C </i>треугольника<i> ABC </i>пересекают описанную окружность этого треугольника в точках<i> A<sub>0</sub> </i>и<i> C<sub>0</sub> </i>соответственно. Прямая, проходящая через центр вписанной окружности треугольника<i> ABC </i>параллельно стороне<i> AC </i>, пересекается с прямой<i> A<sub>0</sub>C<sub>0</sub> </i>в точке<i> P </i>. Докажите, что прямая<i> PB </i>касается описанной окружности треугольника<i> ABC </i>.

Через точку пересечения высот остроугольного треугольника <i> ABC </i> проходят три окружности, каждая из которых касается одной из сторон треугольника в основании высоты. Докажите, что вторые точки пересечения окружностей являются вершинами треугольника, подобного исходному.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка