Олимпиадные задачи по математике для 4-10 класса - сложность 3 с решениями
К двум непересекающимся окружностям ω<sub>1</sub> и ω<sub>2</sub> проведены три общие касательные – две внешние, <i>a</i> и <i>b</i>, и одна внутренняя, <i>c</i>. Прямые <i>a, b</i> и <i>c</i> касаются окружности ω<sub>1</sub> в точках <i>A</i><sub>1</sub>, <i>B</i><sub>1</sub> и <i>C</i><sub>1</sub> соответственно, а окружности ω<sub>2</sub> – в точках <i>A</i><sub>2</sub>, <i>B</i><sub>2</sub> и <i>C</i><sub>2</sub> соответственно. Докажите, что отношение площадей треугольников <i>A</i><sub>1</sub><i>B</i>...
Серединный перпендикуляр к стороне <i>AC</i> неравнобедренного остроугольного треугольника <i>ABC</i> пересекает прямые <i>AB</i> и <i>BC</i> в точках <i>B</i><sub>1</sub> и <i>B</i><sub>2</sub> соответственно, а серединный перпендикуляр к стороне <i>AB</i> пересекает прямые <i>AC</i> и <i>BC</i> в точках <i>C</i><sub>1</sub> и <i>C</i><sub>2</sub> соответственно. Описанные окружности треугольников <i>BB</i><sub>1</sub><i>B</i><sub>2</sub> и <i>CC</i><sub>1</sub><i>C</i><sub>2</sub> пересекаются в точках <i>P<...
Окружность ω, вписанная в остроугольный неравнобедренный треугольник <i>ABC</i>, касается стороны <i>BC</i> в точке <i>D</i>. Пусть точка <i>I</i> – центр окружности ω, а <i>O</i> – центр описанной окружности треугольника <i>ABC</i>. Описанная окружность треугольника <i>AID</i>, пересекает вторично прямую <i>AO</i> в точке <i>E</i>. Докажите, что длина отрезка <i>AE</i> равна радиусу окружности ω.
Дан остроугольный треугольник <i>ABC</i>. Окружность, проходящая через вершину <i>B</i> и центр <i>O</i> его описанной окружности, вторично пересекает стороны <i>BC</i> и <i>BA</i> в точках <i>P</i> и <i>Q</i> соответственно. Докажите, что ортоцентр треугольника <i>POQ</i> лежит на прямой <i>AC</i>.
Какие треугольники можно разрезать на три треугольника с равными радиусами описанных окружностей?
В треугольнике <i> ABC </i>проведена биссектриса <i> BD </i>(точка <i> D </i>лежит на отрезке <i> AC </i>). Прямая <i> BD </i>пересекает окружность <i> Ω </i>, описанную около треугольника <i> ABC </i>, в точках <i> B </i>и <i> E </i>. Окружность <i> ω </i>, построенная на отрезке <i> DE </i>как на диаметре, пересекает окружность <i> Ω </i>в точках <i> E </i>и <i> F </i>. Докажите, что прямая, симметричная прямой <i> BF </i>относительно прямой <i> BD </i>, содержит медиану треугольника <i> ABC </i>.
Пусть точки<i> A </i>,<i> B </i>,<i> C </i>лежат на окружности, а прямая<i> b </i>касается этой окружности в точке<i> B </i>. Из точки<i> P </i>, лежащей на прямой<i> b </i>, опущены перпендикуляры<i> PA<sub>1</sub> </i>и<i> PC<sub>1</sub> </i>на прямые<i> AB </i>и<i> BC </i>соответственно (точки<i> A<sub>1</sub> </i>и<i> C<sub>1</sub> </i>лежат на отрезках<i> AB </i>и<i> BC </i>). Докажите, что<i> A<sub>1</sub>C<sub>1</sub> <img align="absmiddle" src="/storage/problem-media/115370/problem_115370_img_2.gif"> A...
Прямые, касающиеся окружности ω в точках <i>B</i> и <i>D</i>, пересекаются в точке <i>P</i>. Прямая, проходящая через <i>P</i>, высекает на окружности хорду <i>AC</i>. Через точку отрезка <i>AC</i> проведена прямая, параллельная <i>BD</i>. Докажите, что она делит длины ломаных <i>ABC</i> и <i>ADC</i> в одинаковых отношениях.
В неравнобедренном треугольнике <i>ABC</i> точки <i>H</i> и <i>M</i> – точки пересечения высот и медиан соответственно. Через вершины <i>A, B</i> и <i>C</i> проведены прямые, перпендикулярные прямым <i>AM, BM, CM</i> соответственно. Докажите, что точка пересечения медиан треугольника, образованного проведёнными прямыми, лежит на прямой <i>MH</i>.
На бесконечной в обе стороны ленте бумаги выписаны все целые числа, каждое – ровно по одному разу.
Могло ли оказаться, что между каждыми двумя числами не стоит их среднее арифметическое?
На стороне<i> BC </i>треугольника<i> ABC </i>выбрана произвольная точка<i> D </i>. В треугольники<i> ABD </i>и<i> ACD </i>вписаны окружности с центрами<i> K </i>и<i> L </i>соответственно. Докажите, что описанные окружности треугольников<i> BKD </i>и<i> CLD </i>вторично пересекаются на фиксированной окружности.
Точка<i> D </i>на стороне<i> BC </i>треугольника<i> ABC </i>такова, что радиусы вписанных окружностей треугольников<i> ABD </i>и<i> ACD </i>равны. Докажите, что радиусы окружностей, вневписанных в треугольники<i> ABD </i>и<i> ACD </i>, касающихся соответственно отрезков<i> BD </i>и<i> CD </i>, также равны.
Медиану <i>AA</i><sub>0</sub> треугольника <i>ABC</i> отложили от точки <i>A</i><sub>0</sub> перпендикулярно стороне <i>BC</i> во внешнюю сторону треугольника. Обозначим второй конец построенного отрезка через <i>A</i><sub>1</sub>. Аналогично строятся точки <i>B</i><sub>1</sub> и <i>C</i><sub>1</sub>. Найдите углы треугольника <i>A</i><sub>1</sub><i>B</i><sub>1</sub><i>C</i><sub>1</sub>, если углы треугольника <i>ABC</i> равны 30°, 30° и 120°.
Каждая деталь конструктора "Юный паяльщик" – это скобка в виде буквы П, состоящая из трёх единичных отрезков. Можно ли из деталей этого конструктора спаять полный проволочный каркас куба 2×2×2, разбитого на кубики 1×1×1? (Каркас состоит из 27 точек, соединённых единичными отрезками; любые две соседние точки должны быть соединены ровно одним проволочным отрезком.)
Биссектрисы углов<i> A </i>и<i> C </i>треугольника<i> ABC </i>пересекают описанную окружность этого треугольника в точках<i> A<sub>0</sub> </i>и<i> C<sub>0</sub> </i>соответственно. Прямая, проходящая через центр вписанной окружности треугольника<i> ABC </i>параллельно стороне<i> AC </i>, пересекается с прямой<i> A<sub>0</sub>C<sub>0</sub> </i>в точке<i> P </i>. Докажите, что прямая<i> PB </i>касается описанной окружности треугольника<i> ABC </i>.
Через точку пересечения высот остроугольного треугольника <i> ABC </i> проходят три окружности, каждая из которых касается одной из сторон треугольника в основании высоты. Докажите, что вторые точки пересечения окружностей являются вершинами треугольника, подобного исходному.
Биссектрисы углов <i>A</i> и <i>C</i> треугольника <i>ABC</i> пересекают его стороны в точках <i>A</i><sub>1</sub> и <i>C</i><sub>1</sub>, а описанную окружность этого треугольника – в точках <i>A</i><sub>0</sub> и <i>C</i><sub>0</sub> соответственно. Прямые <i>A</i><sub>1</sub><i>C</i><sub>1</sub> и <i>A</i><sub>0</sub><i>C</i><sub>0</sub> пересекаются в точке <i>P</i>. Докажите, что отрезок, соединяющий <i>P</i> с центром вписанной окружности треугольника <i>ABC</i>, параллелен <i>AC</i>.
<i>AA</i><sub>1</sub> и <i>BB</i><sub>1</sub> – высоты остроугольного неравнобедренного треугольника <i>ABC</i>. Известно, что отрезок <i>A</i><sub>1</sub><i>B</i><sub>1</sub> пересекает среднюю линию, параллельную <i>AB</i>, в точке <i>C'</i>. Докажите, что отрезок <i>CC'</i> перпендикулярен прямой, проходящей через точку пересечения высот и центр описанной окружности треугольника <i>ABC</i>.
Каждую вершину трапеции отразили симметрично относительно диагонали, не содержащей эту вершину.
Докажите, что если получившиеся точки образуют четырёхугольник, то он также является трапецией.
Двое игроков по очереди расставляют в каждой из 24 клеток поверхности куба 2×2×2 числа 1, 2, 3, 24 (каждое число можно ставить один раз). Второй игрок хочет, чтобы суммы чисел в клетках каждого кольца из 8 клеток, опоясывающего куб, были одинаковыми. Сможет ли первый игрок ему помешать?
Два игрока по очереди выписывают на доске в ряд слева направо произвольные цифры. Проигрывает игрок, после хода которого одна или несколько цифр, записанных подряд, образуют число, кратное 11. Кто из игроков победит при правильной игре?
Пусть <i>A</i><sub>0</sub> – середина стороны <i>BC</i> треугольника <i>ABC</i>, а <i>A'</i> – точка касания с этой стороной вписанной окружности. Построим окружность Ω с центром в <i>A</i><sub>0</sub> и проходящую через <i>A'</i>. На других сторонах построим аналогичные окружности. Докажите, что если Ω касается описанной окружности на дуге <i>BC</i>, не содержащей <i>A</i>, то еще одна из построенных окружностей касается описанной окружности.
Докажите, что любой треугольник можно разрезать не более чем на три части, из которых складывается равнобедренный треугольник.
Какое наименьшее число сторон может иметь нечётноугольник (не обязательно выпуклый), который можно разрезать на параллелограммы?
В таблице 99×101 расставлены кубы натуральных чисел, как показано на рисунке. <div align="center"><img src="/storage/problem-media/110043/problem_110043_img_2.gif"></div>Докажите, что сумма всех чисел в таблице делится на 200.