Олимпиадные задачи из источника «Всероссийская олимпиада по математике» для 11 класса - сложность 3 с решениями
На окружности отмечено 2<i>n</i> + 1 точек, делящих её на равные дуги (<i>n</i> ≥ 2). Двое по очереди стирают по одной точке. Если после хода игрока все треугольники с вершинами в ещё отмеченных точках – тупоугольные, он выигрывает, и игра заканчивается. Кто выиграет при правильной игре: начинающий игру или его противник?
Точки <i>A</i><sub>1</sub>, <i>B</i><sub>1</sub>, <i>C</i><sub>1</sub> выбраны на сторонах <i>BC, CA</i> и <i>AB</i> треугольника <i>ABC</i> соответственно. Оказалось, что <i>AB</i><sub>1</sub> – <i>AC</i><sub>1</sub> = <i>CA</i><sub>1</sub> – <i>CB</i><sub>1</sub> = <i>BC</i><sub>1</sub> – <i>BA</i><sub>1</sub>. Пусть <i>O<sub>A</sub></i>, <i>O<sub>B</sub></i> и <i>O<sub>C</sub></i> – центры описанных окружностей треугольников <i>AB</i><sub>1</sub&...
Даны многочлен <i>P</i>(<i>x</i>) и такие числа <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, <i>a</i><sub>3</sub>, <i>b</i><sub>1</sub>, <i>b</i><sub>2</sub>, <i>b</i><sub>3</sub>, что <i>a</i><sub>1</sub><i>a</i><sub>2</sub><i>a</i><sub>3</sub> ≠ 0. Оказалось, что <i>P</i>(<i>a</i><sub>1</sub><i>x + b</i><sub>1</sub>) + <i>P</i>(<i>a</i><sub>2</sub><i>x + b</i><sub>2</sub>) = <i>P</i>(<i>a</i><sub>3<...
Дана пирамида <i>SA</i><sub>1</sub><i>A</i><sub>2</sub>...<i>A<sub>n</sub></i>, основание которой – выпуклый многоугольник <i>A</i><sub>1</sub><i>A</i><sub>2</sub>...<i>A<sub>n</sub></i>. Для каждого <i>i</i> = 1, 2, ..., <i>n</i> в плоскости основания построили треугольник <i>X<sub>i</sub>A<sub>i</sub>A</i><sub><i>i</i>+1</sub>, равный треугольнику <i>SA<sub>i</sub>A</i><sub><i>i</i>+1</sub> и лежащий по ту же сторону от прямой <i>A<sub>i</sub>A</i><sub><i>i</i>+1</sub>...
Клетчатая плоскость раскрашена в шахматном порядке в чёрный и белый цвета. Затем белые клетки снова раскрашены в красный и синий цвета так, чтобы клетки, соседние по углу, были разноцветными. Пусть <i>l</i> – прямая, не параллельная сторонам клеток. Для каждого отрезка <i>I</i>, параллельного <i>l</i>, посчитаем разность сумм длин его красных и синих участков. Докажите, что существует число <i>C</i> (зависящее только от прямой <i>l</i>) такое, что все полученные разности не превосходят <i>C</i>.
Существуют ли такие натуральные числа <i>a, b, c</i>, большие 10<sup>10</sup>, что их произведение делится на любое из них, увеличенное на 2012?
Каждые два из действительных чисел <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, <i>a</i><sub>3</sub>, <i>a</i><sub>4</sub>, <i>a</i><sub>5</sub> отличаются не менее чем на 1. Оказалось, что для некоторого действительного <i>k</i> выполнены равенства <img align="absmiddle" src="/storage/problem-media/116765/problem_116765_img_2.gif"> Докажите, что <i>k</i>² ≥ <sup>25</sup>/<sub>3</sub>.
Окружность ω, вписанная в остроугольный неравнобедренный треугольник <i>ABC</i>, касается стороны <i>BC</i> в точке <i>D</i>. Пусть точка <i>I</i> – центр окружности ω, а <i>O</i> – центр описанной окружности треугольника <i>ABC</i>. Описанная окружность треугольника <i>AID</i>, пересекает вторично прямую <i>AO</i> в точке <i>E</i>. Докажите, что длина отрезка <i>AE</i> равна радиусу окружности ω.
Пусть <i>a</i><sub>1</sub>, ..., <i>a</i><sub>10</sub> – различные натуральные числа, не меньшие 3, сумма которых равна 678. Может ли сумма остатков от деления некоторого натурального числа <i>n</i> на 20 чисел <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, ..., <i>a</i><sub>10</sub>, 2<i>a</i><sub>1</sub>, 2<i>a</i><sub>2</sub>,..., 2<i>a</i><sub>10</sub> равняться 2012?
Для натурального <i>a</i> обозначим через <i>P</i>(<i>a</i>) наибольший простой делитель числа <i>a</i>² + 1.
Докажите, что существует бесконечно много таких троек различных натуральных чисел <i>a, b, c</i>, что <i>P</i>(<i>a</i>) = <i>P</i>(<i>b</i>) = <i>P</i>(<i>c</i>).
В Академии Наук 999 академиков. Каждая научная тема интересует ровно троих академиков, и у каждых двух академиков есть ровно одна тема, интересная им обоим. Докажите, что можно выбрать 250 тем из их общей области научных интересов так, чтобы каждый академик интересовался не более чем одной из них.
На стороне <i>BC</i> параллелограмма <i>ABCD</i> (∠<i>A</i> < 90°) отмечена точка <i>T</i> так, что треугольник <i>ATD</i> – остроугольный. Пусть <i>O</i><sub>1</sub>, <i>O</i><sub>2</sub> и <i>O</i><sub>3</sub> – центры описанных окружностей треугольников <i>ABT</i>, <i>DAT</i> и <i>CDT</i> соответственно (см. рисунок). <div align="center"><img src="/storage/problem-media/116647/problem_116647_img_2.gif"></div>Докажите, что ортоцентр треугольника<i>O</i><sub>1</sub><i>O</i><sub>2</sub><i>O</i><sub>3</sub>лежит...
Даны положительные числа <i>b</i> и <i>c</i>. Докажите неравенство (<i>b</i> – <i>c</i>)<sup>2011</sup>(<i>b</i> + <i>c</i>)<sup>2011</sup>(<i>c</i> – <i>b</i>)<sup>2011</sup> ≥ (<i>b</i><sup>2011</sup> – <i>c</i><sup>2011</sup>)(<i>b</i><sup>2011</sup> + <i>c</i><sup>2011</sup>)(<i>c</i><sup>2011</sup> – <i>b</i><sup>2011</sup>).
Вася нарисовал на плоскости несколько окружностей и провёл всевозможные общие касательные к каждой паре этих окружностей. Оказалось, что проведённые прямые содержат все стороны некоторого правильного 2011-угольника. Какое наименьшее количество окружностей мог нарисовать Вася?
Остроугольный треугольник <i>ABC</i> вписан в окружность ω. Касательные к ω, проведённые через точки <i>B</i> и <i>C</i>, пересекают касательную к ω, проведённую через точку <i>A</i>, в точках <i>K</i> и <i>L</i> соответственно. Прямая, проведённая через <i>K</i> параллельно <i>AB</i>, пересекается с прямой, проведённой через <i>L</i> параллельно <i>AC</i>, в точке <i>P</i>. Докажите, что <i>BP = CP</i>.
2011 складов соединены дорогами так, что от каждого склада можно проехать к любому другому, возможно, проехав по нескольким дорогам. На складах находится по <i>x</i><sub>1</sub>, ..., <i>x</i><sub>2011</sub> кг цемента соответственно. За один рейс можно провезти с произвольного склада на другой по соединяющей их дороге произвольное количество цемента. В итоге на складах по плану должно оказаться по <i>y</i><sub>1</sub>, ..., <i>y</i><sub>2011</sub> кг цемента соответственно, причём
<i>x</i><sub>1</sub> + <i>x</i><sub>2</sub> + ... + <i>x</i><sub>2011</sub> = <i>y</i><sub>1</sub> + <i>y<...
На окружности, описанной около прямоугольника <i>ABCD</i>, выбрана точка <i>K</i>. Оказалось, что прямая <i>CK</i> пересекает отрезок <i>AD</i> в такой точке <i>M</i>, что
<i>AM</i> : <i>MD</i> = 2. Пусть <i>O</i> – центр прямоугольника. Докажите, что точка пересечения медиан треугольника <i>OKD</i> лежит на описанной окружности треугольника <i>COD</i>.
По кругу стоят 100 напёрстков. Под одним из них спрятана монетка. За один ход разрешается перевернуть четыре напёрстка и проверить, лежит ли под одним из них монетка. После этого их возвращают в исходное положение, а монетка перемещается под один из соседних с ней напёрстков. За какое наименьшее число ходов наверняка удастся обнаружить монетку?
Даны натуральные числа <i>x</i> и <i>y</i> из отрезка [2, 100]. Докажите, что при некотором натуральном <i>n</i> число <i>x</i><sup>2<i><sup>n</sup></i></sup> + <i>y</i><sup>2<i><sup>n</sup></i></sup> – составное.
Сколько раз функция <i>f</i>(<i>x</i>) = cos <i>x</i> cos <sup><i>x</i></sup>/<sub>2</sub> cos <sup><i>x</i></sup>/<sub>3</sub> ... cos <sup><i>x</i></sup>/<sub>2009</sub> меняет знак на отрезке [0, <sup>2009π</sup>/<sub>2</sub>] ?
Найдите все такие натуральные <i>n</i>, что при некоторых отличных от нуля действительных числах <i>a, b, c, d</i> многочлен (<i>ax + b</i>)<sup>1000</sup> – (<i>cx + d</i>)<sup>1000</sup> после раскрытия скобок и приведения всех подобных слагаемых имеет ровно <i>n</i> ненулевых коэффициентов.
В некоторых клетках доски 10×10 поставили <i>k</i> ладей, и затем отметили все клетки, которые бьёт хотя бы одна ладья (ладья бьёт и клетку, на которой стоит). При каком наибольшем <i>k</i> может оказаться, что после удаления с доски любой ладьи хотя бы одна отмеченная клетка окажется не под боем?
Пусть1<i><a<img align="absmiddle" src="/storage/problem-media/115400/problem_115400_img_2.gif"> b<img align="absmiddle" src="/storage/problem-media/115400/problem_115400_img_2.gif"> c </i>. Докажите, что <center><i>
log <sub>a</sub> b+log <sub>b</sub> c+log <sub>c</sub> a<img align="absmiddle" src="/storage/problem-media/115400/problem_115400_img_2.gif">log <sub>b</sub> a+log <sub>c</sub> b+log <sub>a</sub> c.
</i></center>
В стране некоторые пары городов соединены дорогами, которые не пересекаются вне городов. В каждом городе установлена табличка, на которой указана минимальная длина маршрута, выходящего из этого города и проходящего по всем остальным городам страны (маршрут может проходить по некоторым городам больше одного раза и не обязан возвращаться в исходный город). Докажите, что любые два числа на табличках отличаются не более чем в полтора раза.
<img align="right" src="/storage/problem-media/115364/problem_115364_img_2.gif"> Назовём лестницей высоты <i>n</i> фигуру, состоящую из всех клеток квадрата <i>n</i>×<i>n</i>, лежащих не выше диагонали (на рисунке показана лестница высоты 4). Сколькими различными способами можно разбить лестницу высоты <i>n</i> на несколько прямоугольников, стороны которых идут по линиям сетки, а площади попарно различны?