Олимпиадные задачи из источника «2001-2002» для 10 класса - сложность 2-3 с решениями

По шоссе мимо наблюдателя проехали "Москвич", "Запорожец" и двигавшаяся им навстречу "Нива". Известно, что когда с наблюдателем поравнялся "Москвич", то он был равноудалён от "Запорожца" и "Нивы", а когда с наблюдателем поравнялась "Нива", то она была равноудалена от "Москвича" и "Запорожца". Докажите, что "Запорожец" в момент проезда мимо наблюдателя был равноудалён от "Нивы" и "Москвича". (Скорости автомашин считаем постоянными. В рассматриваемые моменты равноудалённые машины находились по разные стороны от наблюдателя.)

На отрезке  [0, 2002]  отмечены его концы и точка с координатой <i>d</i>, где <i>d</i> – взаимно простое с 1001 число. Разрешается отметить середину любого отрезка с концами в отмеченных точках, если её координата целая. Можно ли, повторив несколько раз эту операцию, отметить все целые точки на отрезке?

На плоскости расположено[<i><img src="/storage/problem-media/110102/problem_110102_img_2.gif"> n</i>]прямоугольников со сторонами, параллельными осям координат. Известно, что любой прямоугольник пересекается хотя бы с<i> n </i>прямоугольниками. Доказать, что найдется прямоугольник, пересекающийся со всеми прямоугольниками.

Приведённый квадратный трёхчлен с целыми коэффициентами в трёх последовательных целых точках принимает простые значения.

Докажите, что он принимает простое значение по крайней мере еще в одной целой точке.

В какое наибольшее число цветов можно раскрасить все клетки доски размера 10×10 так, чтобы в каждой строке и в каждом столбце находились клетки не более чем пяти различных цветов?

На отрезке  [0, 2002]  отмечены его концы и  <i>n</i> – 1 > 0  целых точек так, что длины отрезков, на которые разбился отрезок  [0, 2002],  взаимно просты в совокупности. Разрешается разделить любой отрезок с отмеченными концами на <i>n</i> равных частей и отметить точки деления, если они все целые. (Точку можно отметить второй раз, при этом она остаётся отмеченной.) Можно ли, повторив несколько раз эту операцию, отметить все целые точки на отрезке?

Набор чисел<i>a</i><sub>0</sub>,<i>a</i><sub>1</sub>, ...,<i>a<sub>n</sub></i>удовлетворяет условиям:  <i>a</i><sub>0</sub>= 0,  0 ≤<i>a</i><sub><i>k</i>+1</sub>–<i>a<sub>k</sub></i>≤ 1  при  <i>k</i>= 0, 1, ...,<i>n</i>– 1.  Докажите неравенство  <img align="absmiddle" src="/storage/problem-media/110096/problem_110096_img_2.gif">

В выпуклом многоугольнике на плоскости содержится не меньше  <i>m</i>² + 1  точек с целыми координатами.

Докажите, что в нём найдутся  <i>m</i> + 1  точек с целыми координатами, которые лежат на одной прямой.

Какова наибольшая длина арифметической прогрессии из натуральных чисел <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, ..., <i>a<sub>n</sub></i> с разностью 2, обладающей свойством:  <img align="absmiddle" src="/storage/problem-media/110093/problem_110093_img_2.gif">  – простое при всех  <i>k</i> = 1, 2, ..., <i>n</i>?

На отрезке  [0, <i>N</i>]  отмечены его концы и еще две точки так, что длины отрезков, на которые разбился отрезок  [0, <i>N</i>],  целые и взаимно просты в совокупности. Если нашлись такие две отмеченные точки <i>A</i> и <i>B</i>, что расстояние между ними кратно 3, то можно разделить отрезок <i>AB</i> на три равных части, отметить одну из точек деления и стереть одну из точек <i>A, B</i>. Верно ли, что за несколько таких действий можно отметить любую наперед заданную целую точку отрезка  [0, <i>N</i>]?

Пусть <i>P</i>(<i>x</i>) – многочлен нечётной степени. Докажите, что уравнение  <i>P</i>(<i>P</i>(<i>x</i>)) = 0  имеет не меньше различных действительных корней, чем уравнение  <i>P</i>(<i>x</i>) = 0.

Набор чисел <i>a</i><sub>0</sub>, <i>a</i><sub>1</sub>, ..., <i>a<sub>n</sub></i> удовлетворяет условиям:  <i>a</i><sub>0</sub> = 0,  <i>a</i><sub><i>k</i>+1</sub> ≥ <i>a</i><sub><i>k</i></sub> + 1  при  <i>k</i> = 0, 1, ..., <i>n</i> – 1.  Докажите неравенство   <img align="absmiddle" src="/storage/problem-media/110087/problem_110087_img_2.gif">

Высота четырехугольной пирамиды<i> SABCD </i>проходит через точку пересечения диагоналей ее основания<i> ABCD </i>. Из вершин основания опущены перпендикуляры<i> AA</i>1,<i> BB</i>1,<i> CC</i>1,<i> DD</i>1на прямые<i> SC </i>,<i> SD </i>,<i> SA </i>и<i> SB </i>соответственно. Оказалось, что точки<i> S </i>,<i> A</i>1,<i> B</i>1,<i> C</i>1,<i> D</i>1различны и лежат на одной сфере. Докажите, что прямые<i> AA</i>1,<i> BB</i>1,<i> CC</i>1,<i> DD</i>1проходят через одну точку.

Действительные числа <i>x</i> и <i>y</i> таковы, что для любых различных простых нечётных <i>p</i> и <i>q</i> число  <i>x<sup>p</sup> + y<sup>q</sup> </i>  рационально.

Докажите, что <i>x</i> и <i>y</i> – рациональные числа.

Из промежутка  (2<sup>2<i>n</i></sup>, 2<sup>3<i>n</i></sup>)  выбрано  2<sup>2<i>n</i>–1</sup> + 1  нечётное число.

Докажите, что среди выбранных чисел найдутся два, квадрат каждого из которых не делится на другое.

На шахматной доске стоят восемь ладей, не бьющих друг друга. Докажите, что среди попарных расстояний между ними найдутся два одинаковых. (Расстояние между ладьями – это расстояние между центрами клеток, в которых они стоят.)

Сумма положительных чисел <i>a, b, c</i> равна 3. Докажите, что   <img align="absmiddle" src="/storage/problem-media/109763/problem_109763_img_2.gif">

Докажите, что для любого натурального числа  <i>n</i> > 10000  найдётся такое натуральное число <i>m</i>, представимое в виде суммы двух квадратов, что

 0 < <i>m – n</i> < 3 <img align="absmiddle" src="/storage/problem-media/109761/problem_109761_img_2.gif"> .

Многочлены <i>P, Q</i> и <i>R</i> с действительными коэффициентами, среди которых есть многочлен второй степени и многочлен третьей степени, удовлетворяют равенству  <i>P</i>² + <i>Q</i>² = <i>R</i>².  Докажите, что все корни одного из многочленов третьей степени – действительные.

Найдите наименьшее натуральное число, представимое в виде суммы 2002 натуральных слагаемых с одинаковой суммой цифр и в виде суммы 2003 натуральных слагаемых с одинаковой суммой цифр.

Серединный перпендикуляр к стороне <i>AC</i> треугольника <i>ABC</i> пересекает сторону <i>BC</i> в точке <i>M</i>. Биссектриса угла <i>AMB</i> пересекает описанную окружность треугольника <i>ABC</i> в точке <i>K</i>. Докажите, что прямая, проходящая через центры вписанных окружностей треугольников <i>AKM</i> и <i>BKM</i>, перпендикулярна биссектрисе угла <i>AKB</i>.

Пусть точка<i> A' </i>лежит на одной из сторон трапеции<i> ABCD </i>, причём прямая<i> AA' </i>делит площадь трапеции пополам. Точки<i> B' </i>,<i> C' </i>и<i> D' </i>определяются аналогично. Докажите, что точка пересечения диагоналей четырёхугольников<i> ABCD </i>и<i> A'B'C'D' </i>симметричны относительно середины средней линии трапеции<i> ABCD </i>.

Дан четырёхугольник <i>ABCD</i>, вписанный в окружность ω. Касательная к ω, проведённая через точку <i>A</i>, пересекает продолжение стороны <i>BC</i> за точку <i>B</i> в точке <i>K</i>, а касательная к ω, проведённая через точку <i>B</i>, пересекает продолжение стороны <i>AD</i> за точку <i>A</i> в точке <i>M</i>. Известно, что  <i>AM = AD</i>  и  <i>BK = BC</i>.  Докажите, что <i>ABCD</i> – трапеция.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка