Олимпиадные задачи из источника «Региональный этап»

Среди 18 деталей, выставленных в ряд, какие-то три подряд стоящие весят по 99 г, а все остальные – по 100 г. Двумя взвешиваниями на весах со стрелкой определите все 99-граммовые детали.

По шоссе мимо наблюдателя проехали "Москвич", "Запорожец" и двигавшаяся им навстречу "Нива". Известно, что когда с наблюдателем поравнялся "Москвич", то он был равноудалён от "Запорожца" и "Нивы", а когда с наблюдателем поравнялась "Нива", то она была равноудалена от "Москвича" и "Запорожца". Докажите, что "Запорожец" в момент проезда мимо наблюдателя был равноудалён от "Нивы" и "Москвича". (Скорости автомашин считаем постоянными. В рассматриваемые моменты равноудалённые машины находились по разные стороны от наблюдателя.)

Написанное на доске четырехзначное число можно заменить на другое, прибавив к двум его соседним цифрам по единице, если ни одна из этих цифр не равна 9, либо вычтя из соседних двух цифр по единице, если ни одна из них не равна 0. Можно ли с помощью таких операций из числа 1234 получить число 2002?

Имеется 11 пустых коробок. За один ход можно положить по одной монете в какие-то 10 из них. Играют двое, ходят по очереди. Побеждает тот, после хода которого впервые в одной из коробок окажется 21 монета. Кто выигрывает при правильной игре?

Клетки квадрата 9×9 окрашены в красный и белый цвета. Докажите, что найдётся или клетка, у которой ровно два красных соседа по углу, или клетка, у которой ровно два белых соседа по углу (или и то, и другое).

Можно ли все клетки таблицы 9×2002 заполнить натуральными числами так, чтобы суммы чисел в каждом столбце и суммы чисел в каждой строке были бы простыми числами?

На отрезке  [0, 2002]  отмечены его концы и точка с координатой <i>d</i>, где <i>d</i> – взаимно простое с 1001 число. Разрешается отметить середину любого отрезка с концами в отмеченных точках, если её координата целая. Можно ли, повторив несколько раз эту операцию, отметить все целые точки на отрезке?

Можно ли расставить по кругу числа 1, 2, ..., 60 в таком порядке, чтобы сумма каждых двух чисел, между которыми находится одно число, делилась на 2, сумма каждых двух чисел, между которыми находятся два числа, делилась на 3, сумма каждых двух чисел, между которыми находятся шесть чисел, делилась на 7?

На плоскости расположено[<i><img src="/storage/problem-media/110102/problem_110102_img_2.gif"> n</i>]прямоугольников со сторонами, параллельными осям координат. Известно, что любой прямоугольник пересекается хотя бы с<i> n </i>прямоугольниками. Доказать, что найдется прямоугольник, пересекающийся со всеми прямоугольниками.

Приведённый квадратный трёхчлен с целыми коэффициентами в трёх последовательных целых точках принимает простые значения.

Докажите, что он принимает простое значение по крайней мере еще в одной целой точке.

В какое наибольшее число цветов можно раскрасить все клетки доски размера 10×10 так, чтобы в каждой строке и в каждом столбце находились клетки не более чем пяти различных цветов?

На отрезке  [0, 2002]  отмечены его концы и  <i>n</i> – 1 > 0  целых точек так, что длины отрезков, на которые разбился отрезок  [0, 2002],  взаимно просты в совокупности. Разрешается разделить любой отрезок с отмеченными концами на <i>n</i> равных частей и отметить точки деления, если они все целые. (Точку можно отметить второй раз, при этом она остаётся отмеченной.) Можно ли, повторив несколько раз эту операцию, отметить все целые точки на отрезке?

На оси <i>Ox</i> произвольно расположены различные точки  <i>X</i><sub>1</sub>, ..., <i>X<sub>n</sub></i>,  <i>n</i> ≥ 3.  Построены все параболы, задаваемые приведёнными квадратными трёхчленами и пересекающие ось <i>Ox</i> в данных точках (и не пересекающие ееё в других точках). Пусть  <i>y = f</i><sub>1</sub>(<i>x</i>),  ...,  <i>y = f<sub>m</sub></i>(<i>x</i>)  – соответствующие параболы. Докажите, что парабола  <i>y = f</i><sub>1</sub>(<i>x</i>) + ... + <i>f<sub>m</sub></i>(<i>x</i>)  пересекает ось <i>Ox</i> в двух точках.

Набор чисел<i>a</i><sub>0</sub>,<i>a</i><sub>1</sub>, ...,<i>a<sub>n</sub></i>удовлетворяет условиям:  <i>a</i><sub>0</sub>= 0,  0 ≤<i>a</i><sub><i>k</i>+1</sub>–<i>a<sub>k</sub></i>≤ 1  при  <i>k</i>= 0, 1, ...,<i>n</i>– 1.  Докажите неравенство  <img align="absmiddle" src="/storage/problem-media/110096/problem_110096_img_2.gif">

В выпуклом многоугольнике на плоскости содержится не меньше  <i>m</i>² + 1  точек с целыми координатами.

Докажите, что в нём найдутся  <i>m</i> + 1  точек с целыми координатами, которые лежат на одной прямой.

Какова наибольшая длина арифметической прогрессии из натуральных чисел <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, ..., <i>a<sub>n</sub></i> с разностью 2, обладающей свойством:  <img align="absmiddle" src="/storage/problem-media/110093/problem_110093_img_2.gif">  – простое при всех  <i>k</i> = 1, 2, ..., <i>n</i>?

На отрезке  [0, <i>N</i>]  отмечены его концы и еще две точки так, что длины отрезков, на которые разбился отрезок  [0, <i>N</i>],  целые и взаимно просты в совокупности. Если нашлись такие две отмеченные точки <i>A</i> и <i>B</i>, что расстояние между ними кратно 3, то можно разделить отрезок <i>AB</i> на три равных части, отметить одну из точек деления и стереть одну из точек <i>A, B</i>. Верно ли, что за несколько таких действий можно отметить любую наперед заданную целую точку отрезка  [0, <i>N</i>]?

На плоскости даны<i> n></i>1точек. Двое по очереди соединяют еще не соединенную пару точек вектором одного из двух возможных направлений. Если после очередного хода какого-то игрока сумма всех нарисованных векторов нулевая, то выигрывает второй; если же очередной ход невозможен, а нулевой суммы не было, то выигрывает первый. Кто выигрывает при правильной игре?

Пусть <i>P</i>(<i>x</i>) – многочлен нечётной степени. Докажите, что уравнение  <i>P</i>(<i>P</i>(<i>x</i>)) = 0  имеет не меньше различных действительных корней, чем уравнение  <i>P</i>(<i>x</i>) = 0.

Каждая клетка клетчатой плоскости раскрашена в один из<i>n</i>² цветов так, что в каждом квадрате из<i>n×</i>клеток встречаются все цвета. Известно, что в какой-то строке встречаются все цвета. Докажите, что существует столбец, раскрашенный ровно в<i>n</i>цветов.

Набор чисел <i>a</i><sub>0</sub>, <i>a</i><sub>1</sub>, ..., <i>a<sub>n</sub></i> удовлетворяет условиям:  <i>a</i><sub>0</sub> = 0,  <i>a</i><sub><i>k</i>+1</sub> ≥ <i>a</i><sub><i>k</i></sub> + 1  при  <i>k</i> = 0, 1, ..., <i>n</i> – 1.  Докажите неравенство   <img align="absmiddle" src="/storage/problem-media/110087/problem_110087_img_2.gif">

Высота четырехугольной пирамиды<i> SABCD </i>проходит через точку пересечения диагоналей ее основания<i> ABCD </i>. Из вершин основания опущены перпендикуляры<i> AA</i>1,<i> BB</i>1,<i> CC</i>1,<i> DD</i>1на прямые<i> SC </i>,<i> SD </i>,<i> SA </i>и<i> SB </i>соответственно. Оказалось, что точки<i> S </i>,<i> A</i>1,<i> B</i>1,<i> C</i>1,<i> D</i>1различны и лежат на одной сфере. Докажите, что прямые<i> AA</i>1,<i> BB</i>1,<i> CC</i>1,<i> DD</i>1проходят через одну точку.

Действительные числа <i>x</i> и <i>y</i> таковы, что для любых различных простых нечётных <i>p</i> и <i>q</i> число  <i>x<sup>p</sup> + y<sup>q</sup> </i>  рационально.

Докажите, что <i>x</i> и <i>y</i> – рациональные числа.

Дан выпуклый четырёхугольник<i> ABCD </i>, и проведены биссектрисы<i> l<sub>A</sub> </i>,<i> l<sub>B</sub> </i>,<i> l<sub>C</sub> </i>,<i> l<sub>D</sub> </i>внешних углов этого четырёхугольника. Прямые<i> l<sub>A</sub> </i>и<i> l<sub>B</sub> </i>пересекаются в точке<i> K </i>, прямые<i> l<sub>B</sub> </i>и<i> l<sub>C</sub> </i>– в точке<i> L </i>, прямые<i> l<sub>C</sub> </i>и<i> l<sub>D</sub> </i>– в точке<i> M </i>, прямые<i> l<sub>D</sub> </i>и<i> l<sub>A</sub> &...

Серединный перпендикуляр к стороне <i>AC</i> треугольника <i>ABC</i> пересекает сторону <i>BC</i> в точке <i>M</i>. Биссектриса угла <i>AMB</i> пересекает описанную окружность треугольника <i>ABC</i> в точке <i>K</i>. Докажите, что прямая, проходящая через центры вписанных окружностей треугольников <i>AKM</i> и <i>BKM</i>, перпендикулярна биссектрисе угла <i>AKB</i>.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка