Олимпиадные задачи из источника «27 турнир (2005/2006 год)» для 11 класса

Муравей ползает по замкнутому маршруту по рёбрам додекаэдра, нигде не разворачиваясь назад. Маршрут проходит ровно два раза по каждому ребру.

Докажите, что некоторое ребро муравей оба раза проходит в одном и том же направлении.

На окружности сидят 12 кузнечиков в различных точках. Эти точки делят окружность на 12 дуг. Отметим 12 середин дуг. По сигналу кузнечики одновременно прыгают, каждый – в ближайшую по часовой стрелке отмеченную точку. Снова образуются 12 дуг, прыжки в середины дуг повторяются, и т. д. Может ли хотя бы один кузнечик вернуться в свою исходную точку после того, как им сделано   a) 12 прыжков;   б) 13 прыжков?

Докажите, что можно найти бесконечно много таких пар целых чисел, что в десятичной записи каждого числа все цифры не меньше 7 и произведение чисел каждой пары – тоже число, где все цифры не меньше 7.

На биссектрисе <i>AA</i><sub>1</sub> треугольника <i>ABC</i> выбрана точка <i>X</i>. Прямая <i>BX</i> пересекает сторону <i>AC</i> в точке <i>B</i><sub>1</sub>, а прямая <i>CX</i> пересекает сторону <i>AB</i> в точке <i>C</i><sub>1</sub>. Отрезки <i>A</i><sub>1</sub><i>B</i><sub>1</sub> и <i>CC</i><sub>1</sub> пересекаются в точке <i>P</i>, а отрезки <i>A</i><sub>1</sub><i>C</i><sub>1</sub> и <i>BB</i><sub>1</sub> пересекаются в точке <i>Q</i>. Докажите, что углы <i>PAC</i&g...

Докажите, что любая натуральная степень многочлена  <i>P</i>(<i>x</i>) = <i>x</i><sup>4</sup> + <i>x</i>³ – 3<i>x</i>² + <i>x</i> + 2  имеет хотя бы один отрицательный коэффициент.

Существуют ли такие натуральные <i>n</i> и <i>k</i>, что десятичная запись числа 2<sup><i>n</i></sup> начинается числом 5<sup><i>k</i></sup>, а десятичная запись числа 5<sup><i>n</i></sup> начинается числом 2<sup><i>k</i></sup>?

Дан выпуклый 100-угольник. Докажите, что можно отметить такие 50 точек внутри этого многоугольника, что каждая вершина будет лежать на прямой, проходящей через какие-то две из отмеченных точек.

У Пети есть <i>n</i>³ белых кубиков 1×1×1. Он хочет сложить из них куб <i>n</i>×<i>n</i>×<i>n</i>, снаружи полностью белый. Какое наименьшее число граней кубиков должен закрасить Вася, чтобы помешать Пете? Решите задачу при   a)  <i>n</i> = 3;   б)  <i>n</i> = 1000.

Четырёхугольник <i>ABCD</i> – вписанный,  <i>AB = AD</i>. На стороне <i>BC</i> взята точка <i>M</i>, а на стороне <i>CD</i> – точка <i>N</i> так, что угол <i>MAN</i> равен половине угла <i>BAD</i>.

Докажите, что  <i>MN = BM + ND</i>.

Известно, что число <i>a</i> положительно, а неравенство  10 < <i>a<sup>x</sup></i> < 100  имеет ровно пять решений в натуральных числах.

Сколько таких решений может иметь неравенство  100 < <i>a<sup>x</sup></i> < 1000?

Найдутся ли такие функции <i>p</i>(<i>x</i>) и <i>q</i>(<i>x</i>), что <i>p</i>(<i>x</i>) – чётная функция, а <i>p</i>(<i>q</i>(<i>x</i>)) – нечётная функция (отличная от тождественно нулевой)?

Имеется выпуклый многогранник со 100 рёбрами. Все его вершины срезали плоскостями-ножами близко от самих вершин (то есть так, чтобы плоскости-ножи не пересекались друг с другом внутри или на границе многогранника). Найдите у полученного многогранника

  a) число вершин;

  б) число рёбер.

На доске можно либо написать две единицы, либо стереть любые два уже написанных одинаковых числа n и написать вместо них числа  <i>n</i> + 1  и  <i>n</i> – 1.  Какое минимальное количество таких операций требуется, чтобы получить число 2005? (Сначала доска была чистой.)

На окружности расставлено несколько положительных чисел, каждое из которых не больше 1. Докажите, что можно разделить окружность на три дуги так, что суммы чисел на соседних дугах будут отличаться не больше чем на 1. (Если на дуге нет чисел, то сумма на ней считается равной нулю.)

При каких натуральных  <i>n</i> > 1  найдутся такие различные натуральные числа <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, ..., <i>a<sub>n</sub></i>, что сумма   <sup><i>a</i><sub>1</sub></sup>/<sub><i>a</i><sub>2</sub></sub> + <sup><i>a</i><sub>2</sub></sup>/<sub><i>a</i><sub>3</sub></sub> + <sup><i>a<sub>n</sub></i></sup>/<sub><i>a</i><sub>1</sub></sub>   – целое число?

По краю многоугольного стола ползут два муравья. Все стороны стола длиннее 1 м, а расстояние между муравьями всегда ровно 10 см. Сначала оба муравья находятся на одной из сторон стола.

  a) Пусть стол выпуклый. Всегда ли муравьи смогут проползти по краю стола так, чтобы в каждой точке края побывал каждый из муравьев?

  б) Пусть стол не обязательно выпуклый. Всегда ли муравьи смогут проползти по краю стола так, чтобы на краю не осталось точек, в которых не побывал ни один из муравьев?

На каждой клетке шахматной доски вначале стоит по ладье. Каждым ходом можно снять с доски ладью, которая бьет нечётное число ладей. Какое наибольшее число ладей можно снять? (Ладьи бьют друг друга, если они стоят на одной вертикали или горизонтали и между ними нет других ладей.)

На плоскости лежал куб. Его перекатили несколько раз (через рёбра) так, что куб снова оказался на исходном месте той же гранью вверх.

Могла ли при этом верхняя грань повернуться на 90° относительно своего начального положения?

На сторонах прямоугольного треугольника <i>ABC</i> построены во внешнюю сторону квадраты с центрами <i>D, E, F</i>.

Докажите, что отношение  <i>S<sub>DEF</sub></i> : <i>S<sub>ABC</sub></i>   а) больше 1;   б) не меньше 2.

Дан отрезок длины  <img align="absmiddle" src="/storage/problem-media/65819/problem_65819_img_2.gif">  Можно ли построить циркулем и линейкой (на которой нет делений) отрезок длины 1?

Можно ли уместить два точных куба между соседними точными квадратами?

Иными словами, имеет ли решение в целых числах неравенство:  <i>n</i>² < <i>a</i>³ < <i>b</i>³ < (<i>n</i> + 1)²?

Есть шесть монет, одна из которых фальшивая (она отличается по весу от настоящей, но её вес, как и вес настоящей монеты, неизвестен).

Как за три взвешивания с помощью весов, показывающих общий вес взвешиваемых монет, найти фальшивую монету?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка