Олимпиадные задачи из источника «осенний тур, тренировочный вариант, 8-9 класс»
осенний тур, тренировочный вариант, 8-9 класс
НазадЕсть шесть монет, одна из которых фальшивая (она отличается по весу от настоящей, но её вес, как и вес настоящей монеты, неизвестен).
Как за три взвешивания с помощью весов, показывающих общий вес взвешиваемых монет, найти фальшивую монету?
Шахматная фигура может сдвигаться на 8 или 9 клеток по горизонтали или вертикали. Запрещается ходить на одну и ту же клетку дважды.
Какое наибольшее количество клеток может обойти эта фигура на доске 15×15? (Начать обход разрешается с любой клетки.)
Отрезок единичной длины разбили на 11 отрезков, длина каждого из которых не превосходит <i>а</i>.
При каких значениях <i>а</i> можно утверждать, что из любых трёх получившихся отрезков можно составить треугольник?
В каждой вершине куба записано по числу. Вместо каждого числа записывают среднее арифметическое чисел, стоящих в трёх соседних вершинах (числа заменяют одновременно). После десяти таких операций в каждой вершине оказалось исходное число. Обязательно ли все исходные числа были одинаковы?
Дан треугольник <i>ABC</i>. Точки <i>M</i><sub>1</sub>, <i>M</i><sub>2</sub>, <i>M</i><sub>3</sub> – середины сторон <i>AB, BC</i> и <i>AC</i>, a точки <i>H</i><sub>1</sub>, <i>H</i><sub>2</sub>, <i>H</i><sub>3</sub> – основания высот, лежащие на тех же сторонах.
Докажите, что из отрезков <i>H</i><sub>1</sub><i>M</i><sub>2</sub>, <i>H</i><sub>2</sub><i>M</i><sub>3</sub> и <i>H</i><sub>3</sub><i>M</i><sub>1</sub> можно построить треугольник.