Олимпиадные задачи из источника «осенний тур, основной вариант, 10-11 класс»

Дан треугольник <i>ABC, AA</i><sub>1</sub>, <i>BB</i><sub>1</sub> и <i>CC</i><sub>1</sub> – его биссектрисы. Известно, что величины углов <i>A, B</i> и <i>C</i> относятся как  4 : 2 : 1.  Докажите, что  <i>A</i><sub>1</sub><i>B</i><sub>1</sub> = <i>A</i><sub>1</sub><i>C</i><sub>1</sub>.

На доске можно либо написать две единицы, либо стереть любые два уже написанных одинаковых числа n и написать вместо них числа  <i>n</i> + 1  и  <i>n</i> – 1.  Какое минимальное количество таких операций требуется, чтобы получить число 2005? (Сначала доска была чистой.)

На окружности расставлено несколько положительных чисел, каждое из которых не больше 1. Докажите, что можно разделить окружность на три дуги так, что суммы чисел на соседних дугах будут отличаться не больше чем на 1. (Если на дуге нет чисел, то сумма на ней считается равной нулю.)

При каких натуральных  <i>n</i> > 1  найдутся такие различные натуральные числа <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, ..., <i>a<sub>n</sub></i>, что сумма   <sup><i>a</i><sub>1</sub></sup>/<sub><i>a</i><sub>2</sub></sub> + <sup><i>a</i><sub>2</sub></sup>/<sub><i>a</i><sub>3</sub></sub> + <sup><i>a<sub>n</sub></i></sup>/<sub><i>a</i><sub>1</sub></sub>   – целое число?

По краю многоугольного стола ползут два муравья. Все стороны стола длиннее 1 м, а расстояние между муравьями всегда ровно 10 см. Сначала оба муравья находятся на одной из сторон стола.

  a) Пусть стол выпуклый. Всегда ли муравьи смогут проползти по краю стола так, чтобы в каждой точке края побывал каждый из муравьев?

  б) Пусть стол не обязательно выпуклый. Всегда ли муравьи смогут проползти по краю стола так, чтобы на краю не осталось точек, в которых не побывал ни один из муравьев?

На каждой клетке шахматной доски вначале стоит по ладье. Каждым ходом можно снять с доски ладью, которая бьет нечётное число ладей. Какое наибольшее число ладей можно снять? (Ладьи бьют друг друга, если они стоят на одной вертикали или горизонтали и между ними нет других ладей.)

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка