Задача
Докажите, что любая натуральная степень многочлена P(x) = x4 + x³ – 3x² + x + 2 имеет хотя бы один отрицательный коэффициент.
Решение
Пусть Q = Pn. Поскольку P(0) = P(1) = 2, то Q(0) = Q(1) = 2n. Но Q(1) – Q(0) – это сумма всех коэффициентов многочлена Q, кроме свободного члена. Она равна 0, поэтому какой-то коэффициент отрицателен.
Ответ
Ответ задачи отсутствует
Чтобы оставлять комментарии, войдите или зарегистрируйтесь
Комментариев нет