Олимпиадные задачи из источника «Окружная олимпиада (Москва)» - сложность 3 с решениями
Даны <i>n</i> + 1 попарно различных натуральных чисел, меньших 2<i>n</i> (<i>n</i> > 1).
Докажите, что среди них найдутся три таких числа, что сумма двух из них равна третьему.
Дана равнобокая трапеция <i>ABCD</i> (<i>AD || BC</i>). На дуге <i>AD</i> (не содержащей точек <i>B</i> и <i>C</i>) описанной окружности этой трапеции произвольно выбрана точка <i>M</i>. Докажите, что основания перпендикуляров, опущенных из вершин <i>A</i> и <i>D</i> на отрезки <i>BM</i> и <i>CM</i>, лежат на одной окружности.
Ребёнок поставил четыре одинаковых кубика так, что буквы на сторонах кубиков, обращённых к нему, образуют его имя (см. рисунок). Нарисуйте, как расположены остальные буквы на данной развёртке кубика и определите, как зовут ребёнка. <div align="center"><img src="/storage/problem-media/116866/problem_116866_img_2.gif"></div>
Коля утверждает, что можно выяснить, делится ли на 101 сумма всех четырёхзначных чисел, в записи которых нет ни цифры 0, ни цифры 9, не вычисляя самой суммы. Прав ли Коля?
На дне рождения у Васи было 10 ребят (включая Васю). Оказалось, что у каждых двух из этих ребят есть общий дедушка.
Докажите, что у семи из них есть общий дедушка.
В течение92дней авиакомпания ежедневно выполняла по десять рейсов. За день каждый самолет выполнял не более одного рейса. Известно, что для любой пары дней найдется один и только один самолет, летавший в оба эти дня. Докажите, что есть самолет, летавший каждый день.
Какое наименьшее количество трехклеточных уголков можно разместить в квадрате8<i>× </i>8так, чтобы в этот квадрат больше нельзя было поместить ни одного такого уголка?
Докажите, что если выражение<i> <img align="absmiddle" src="/storage/problem-media/115447/problem_115447_img_2.gif"> </i>принимает рациональное значение, то и выражение<i> <img align="absmiddle" src="/storage/problem-media/115447/problem_115447_img_3.gif"> </i>также принимает рациональное значение.
Укажите точки на поверхности куба, из которых диагональ куба видна под наименьшим углом.
В каждой клетке шахматной доски сидят по два таракана. В некоторый момент времени каждый таракан переползает на соседнюю (по стороне) клетку, причём тараканы, сидевшие в одной клетке, переползают в разные клетки. Какое наибольшее количество клеток доски может после этого остаться свободным?
Докажите, что если<i> α </i>,<i> β </i>и<i> γ </i>– углы остроугольного треугольника, то<i> sinα + sinβ + sinγ > </i>2.
В треугольнике<i> ABC </i>точка<i> D </i>– середина стороны<i> AB </i>. Можно ли так расположить точки<i> E </i>и<i> F </i>на сторонах<i> AC </i>и<i> BC </i>соответственно, чтобы площадь треугольника<i> DEF </i>оказалась больше суммы площадей треугольников<i> AED </i>и<i> BFD </i>?
Непрерывная функция<i> f</i>(<i>x</i>)такова, что для всех действительных<i> x </i>выполняется неравенство:<i> f</i>(<i>x<sup>2</sup></i>)<i>-</i>(<i>f</i>(<i>x</i>))<i><sup>2</sup><img src="/storage/problem-media/111264/problem_111264_img_2.gif"><img src="/storage/problem-media/111264/problem_111264_img_3.gif"> </i>. Верно ли, что функция<i> f</i>(<i>x</i>)обязательно имеет точки экстремума?
Найдите угол при вершине осевого сечения прямого кругового конуса, если известно, что существуют три образующие боковой поверхности конуса, попарно перпендикулярные друг другу.
Клетчатая прямоугольная сетка <i>m</i>×<i>n</i> связана из верёвочек единичной длины. Двое делают ходы по очереди. За один ход можно разрезать (посередине) не разрезанную ранее единичную верёвочку. Если не останется ни одного замкнутого верёвочного контура, то игрок, сделавший последний ход, считается проигравшим. Кто из игроков победит при правильной игре и как он должен для этого играть?
Произведение положительных чисел <i>х, у</i> и <i>z</i> равно 1. Докажите, что (2 + <i>х</i>)(2 + <i>у</i>)(2 + <i>z</i>) ≥ 27.
Кольцевая дорога поделена столбами на километровые участки, и известно, что количество столбов чётно. Один из столбов покрашен в жёлтый цвет, другой – в синий, а остальные – в белый. Назовем расстоянием между столбами длину кратчайшей из двух соединяющих их дуг. Найдите расстояние от синего столба до жёлтого, если сумма растояний от синего столба до белых равна 2008 км.
<img align="right" src="/storage/problem-media/109460/problem_109460_img_2.gif">Дан набор одинаковых правильных пятиугольников, при вершинах каждого из которых записаны натуральные числа от 1 до 5, как показано на рисунке. Пятиугольники можно поворачивать и переворачивать. Их сложили в стопку (вершина к вершине), и оказалось, что при каждой из пяти вершин суммы чисел одинаковы. Сколько пятиугольников могло быть в этой стопке?
Петя может располагать три отрезка в пространстве произвольным образом. После того как Петя расположит эти отрезки, Андрей пытается найти плоскость и спроектировать на нее отрезки так, чтобы проекции всех трех были равны. Всегда ли ему удастся это сделать, если: а) три отрезка имеют равные длины? б) длины двух отрезков равны между собой и не равны длине третьего?
Пусть<i> α </i>и<i> β </i>– острые углы такие, что<i> sin<sup>2</sup>α + sin<sup>2</sup>β < </i>1. Докажите, что<i> sin<sup>2</sup>α + sin<sup>2</sup>β < sin<sup>2</sup></i>(<i>α + β</i>).
Даны таблица 100×100 клеток и <i>N</i> фишек. Рассматриваются все такие расстановки фишек в клетки таблицы, что никакие две фишки не стоят в соседних клетках. При каком наибольшем <i>N</i> в каждой из этих расстановок можно найти хотя бы одну фишку, от перемещения которой в соседнюю клетку заданное условие не нарушится? (Соседними считаются клетки, имеющие общую сторону.)
Решите уравнение: (<i>x</i>³ – 2)(2<sup>sin <i>x</i></sup> – 1) + (2<sup><i>x</i>³</sup> – 4) sin <i>x</i> = 0.
Основанием прямоугольного параллелепипеда <i>АВСDA</i><sub>1</sub><i>B</i><sub>1</sub><i>C</i><sub>1</sub><i>D</i><sub>1</sub> является квадрат <i>АВСD</i>.
Найдите наибольшую возможную величину угла между прямой <i>BD</i><sub>1</sub> и плоскостью <i>ВDС</i><sub>1</sub>.
Из точки, не лежащей в плоскости, проведены к этой плоскости перпендикуляр и три наклонные, проекции которых на данную плоскость равны a, b и c. Найдите длину перпендикуляра, если наклонные образуют с плоскостью углы, сумма которых равна 90°.
В окружности с центром O проведены три равные хорды AB, CD и PQ (см. рисунок). Докажите, что MOK равен половине угла BLD.<div align="center"><img src="/storage/problem-media/104095/problem_104095_img_2.jpg"></div>